Материалы по тегу: grace

20.08.2022 [22:30], Алексей Степин

NVIDIA поделилась некоторыми деталями о строении Arm-процессоров Grace и гибридных чипов Grace Hopper

На GTC 2022 весной этого года NVIDIA впервые заявила о себе, как о производителе мощных серверных процессоров. Речь идёт о чипах Grace и гибридных сборках Grace Hopper, сочетающих в себе ядра Arm v9 и ускорители на базе архитектуры Hopper, поставки которых должны начаться в первой половине следующего года. Многие разработчики суперкомпьютеров уже заинтересовались новинками. В преддверии конференции Hot Chips 34 компания раскрыла ряд подробностей о чипах.

Grace производятся с использованием техпроцесса TSMC 4N — это специально оптимизированный для решений NVIDIA вариант N4, входящий в серию 5-нм процессов тайваньского производителя. Каждый кристалл процессорной части Grace содержит 72 ядра Arm v9 с поддержкой масштабируемых векторных расширений SVE2 и расширений виртуализации с поддержкой S-EL2. Как сообщалось ранее, NVIDIA выбрала для новой платформы ядра Arm Neoverse.

Источник: NVIDIA

Процессор Grace также соответствует ряду других спецификаций Arm, в частности, имеет отвечающий стандарту RAS v1.1 контроллер прерываний (Generic Interrupt Controller, GIC) версии v4.1, блок System Memory Management Unit (SMMU) версии v3.1 и средства Memory Partitioning and Monitoring (MPAM). Базовых кристаллов у Grace два, что в сумме даёт 144 ядра — рекордное количество как в мире Arm, так и x86.

Внутренняя организация кластеров ядр в Grace. Источник: NVIDIA

Внутренние блоки Grace соединяются посредством фабрики Scalable Coherency Fabric (SCF), вариации NVIDIA на тему сети CMN-700, применяемой в дизайнах Arm Neoverse. Производительность данного интерконнекта составляет 3,2 Тбайт/с. В случае Grace он предполагает наличие 117 Мбайт кеша L3 и поддерживает когерентность в пределах четырёх сокетов (посредством новой версии NVLink).

Но SCF поддерживает масштабирование. Пока что в «железе» она ограничена двумя блоками Grace, а это уже 144 ядра и 234 Мбайт L3-кеша. Ядра и кеш-разделы (SCC) рапределены по внутренней mesh-фабрике SCF. Коммутаторы (CSN) служат интерфейсами для ядер, кеш-разделов и остальными частями системы. Блоки CSN общаются непосредственно друг с другом, а также с контроллерами LPDDR5X и PCIe 5.0/cNVLink/NVLink C2C.

Блок-схема кристалла Grace. Источник: NVIDIA

В чипе реализована поддержка PCI Express 5.0. Всего контроллер поддерживает 68 линий, 12 из которых могут также работать в режиме cNVLink (NVLink с когерентностью). x16-интерфейс посредством бифуркации может быть превращен в два x8. Также на приведённой NVIDIA диаграмме можно видеть целых 16 двухканальных контроллеров LPDDR5x. Заявлена ПСП на уровне свыше 1 Тбайт/с для сборки (до 546 Гбайт/с на кристалл CPU).

 Источник: NVIDIA

Источник: NVIDIA

Основной же межчиповой связи NVIDIA видит новую версию NVLink — NVLink-C2C, которая в семь раз быстрее PCIe 5.0 и способна обеспечить двунаправленную скорость передачи данных на уровне до 900 Гбайт/с, будучи при этом в пять раз экономичнее. Удельное потребление у новинки составляет 1,3 пДж/бит, что меньше, нежели у AMD Infinity Fabric с 1,5 пДж/бит. Впрочем, существуют и более экономичные решения, например, UCIe (~0,5 пДж/бит).

Новый вариант NVLink обеспечит кластер на базе Grace Hopper единым пространством памяти. Источник: NVIDIA

NVLink-C2C позволяет реализовать унифицированный «плоский» пул памяти с общим адресным пространством для Grace Hopper. В рамках одного узла возможно свободное обращение к памяти соседей. А вот для объединения нескольких узлов понадобится уже внешний коммутатор NVSwitch. Он будет занимать 1U в высоту, и предоставлять 128 портов NVLink 4 с агрегированной пропускной способностью до 6,4 Тбайт/с в дуплексе.

 Источник: NVIDIA

Источник: NVIDIA

Производительность Grace также обещает быть рекордно высокой благодаря оптимизированной архитектуре и быстрому интерконнекту. Даже по предварительным цифрам, опубликованным NVIDIA, речь идёт о 370 очках SPECrate2017_int_base для одного кристалла Grace и 740 очках для 144-ядерной сборки из двух кристаллов — и это с использованием обычного компилятора GCC без тонких платформенных оптимизаций. Последняя цифра существенно выше результатов, показанных 128-ядерными Alibaba T-Head Yitian 710, также использующим архитектуру Arm v9, и 64-ядерными AMD EPYC 7773X.

Постоянный URL: http://servernews.ru/1072574
24.05.2022 [07:00], Игорь Осколков

NVIDIA представила референсные платформы CGX, OVX и HGX на базе собственных Arm-процессоров Grace

На весенней конференции GTC 2022 NVIDIA поделилась подробностями о грядущих серверных Arm-процессорах Grace Superchip и гибридах Grace Hopper Superchip, а на Computex 2022 представила первые референсные платформы на базе этих чипов для OEM-производителей и объявила о расширении программы NVIDIA Certified.

Последнее, впрочем, не означает отказ от x86-систем, поскольку программа будет просто расширена. Да и портирование стороннего и собственного ПО займёт некоторое время. Первые несколько десятков моделей серверов от ASUS, Foxconn, GIGABYTE, QCT, Supermicro и Wiwynn появятся в первой половине 2023 года. Представлены они будут в трёх категориях, причём все, за исключением одной, базируются на «сдвоенных» процессорах Grace Superchip, насчитывающих до 144 ядер.

 Источник: NVIDIA

Источник: NVIDIA

Системы серии OVX, представленной ранее, всё так же будут предназначены для цифровых двойников и Omniverse — NVIDIA продолжает наставить на том, что любое современное производство или промышленное предприятие должно быть интеллектуальным. Arm-версия OVA получит неназванные ускорители NVIDIA и DPU Bluefield-3.

Новая платформа NVIDIA CGX очень похожа на OVX — она тоже получит DPU Bluefield-3 и до четырёх ускорителей NVIDIA A16. CGX создана специального для облачных гейминга и работы с графикой.

А вот новое поколение платформы NVIDIA HGX гораздо интереснее. Оно заметно отличается от предыдущих, которые в основном представляли собой различные комбинации базовых плат NVIDIA с четырьмя или восемью ускорителями, вокруг которых OEM-партнёры строили системы в меру своих умений и фантазий. Нынешняя инкарнация NVIDIA HGX всё же несколько более комплексная, поскольку сейчас предлагается два варианта узлов, специально спроектированных для высокоплотных систем и явно ориентированных на высокопроизводительные вычисления (HPC).

 Источник: NVIDIA

Источник: NVIDIA

Первый вариант — это 1U-лезвие (до 84 шт. в стандартной стойке), которое включает один процессор Grace Superchip, до 1 Тбайт LPDDR5x-памяти с пропускной способностью (ПСП) до 1 Тбайт/с и DPU BlueField-3. Иные варианты сетевого подключения оставлены на усмотрение конечного производителя. Заявленный уровень TDP составляет 500 Вт, так что на выбор доступны системы с воздушным и жидкостным охлаждением.

Второй вариант базируется на гибридных чипах Grace Hopper Superchip, объединяющих в себе посредством шины NVLink-C2C процессорную часть с 512 Гбайт LPDDR5x-памяти и ускоритель NVIDIA H100 c 80 Гбайт HBM3-памяти (ПСП до 3,5 Тбайт/с). Помимо DPU BlueField-3 опционально доступен и интерконнект NVLink 4.0, но и здесь вендору оставлена свобода выбора. Уровень TDP для данной платформы составляет 1 кВт, но вот обойтись одним только воздушным охлаждением (а такой вариант есть) при полном заполнении стойки всеми 42-мя 2U-лезвиями будет трудно.

Постоянный URL: http://servernews.ru/1066512
22.03.2022 [18:48], Игорь Осколков

NVIDIA анонсировала 144-ядерные Arm-процессоры Grace и гибрид Grace Hopper

Главным событием GTC 2022 стал анонс новых ускорителей H100 (Hopper), которые станут доступны в III квартале 2022 года. Вслед за ними в первой половине 2023 года появятся давно обещанные CPU Grace и гибридная система Grace Hopper, сочетающие, как понятно из названия, процессоры Grace (ARMv9) и ускорители Hopper.

Как и было сказано ранее, для связи всех компонентов между собой будет использоваться mesh-сеть на базе всё той же шины NVLink 4.0 (900 Гбайт/с) с кеш-когерентностью. А сочетание LPDDR5X (с ECC, конечно) и HBM даст суммарный объём памяти до 600 Гбайт с общей полосой пропускания порядка 2 Тбайт/с. Для Grace Hopper компания подготовит полный стек ПО, благо портированием на Arm она начала заниматься ещё 3 года назад.

 NVIDIA Grace (Изображения: NVIDIA)

NVIDIA Grace (Изображения: NVIDIA)

Двухчиповый процессор Grace Superchip для ИИ- и HPC-нагрузок имеет 144 ядра, результат которых в SPECrate2017_int_base составляет 740, что, по словам компании, в полтора раза выше, чему у пары AMD EPYC, использующихся в DGX A100. И это, честно говоря, не такой уж и впечатляющий результат.

Но NVIDIA утверждает, что новые CPU вдвое лучше по отношению производительности к энергопотреблению, чем «традиционные серверы» — использование LPDDR5X позволяет добиться пропускной способности памяти в 1 Тбайт/с, а вся сборка CPU+RAM будет потреблять менее 500 Вт.

Чипы (или чиплеты, если хотите) в Grace Superchip тоже объединены посредством NVLink, только в данном случае этот интерконнект называется NVLink-C2C (Chip-to-Chip). И его NVIDIA предлагает использовать другим компаниям для создания кастомных сборок, объединяющих необходимые кристаллы, да и сама готова масштабировать и адаптировать свои решения под нужды заказчика.

По словам NVIDIA, NVLink-C2C в 25 раз энергоэффективнее PCIe 5.0, а для его реализации нужна в 90 раз меньшая площадь кремния. Шина предлагает высокую скорость (да-да, всё те же 900 Гбайт/с), низкий уровень задержек, поддержку атомарных операций и совместимость с Arm AMBA CHI, CXL и UCIe.

Постоянный URL: http://servernews.ru/1062436
12.04.2021 [19:26], Игорь Осколков

NVIDIA анонсировала серверные Arm-процессоры Grace и будущие суперкомпьютеры на их базе

В рамках GTC’21 NVIDIA анонсировала Arm-процессоры Grace серверного класса, которые станут компаньонами будущих ускорителей компании. Это не означает полный отказ от x86-64, но это позволит компании предложить клиентам более глубоко оптимизированные, а, значит, и более быстрые решения. NVIDIA говорит, что новый CPU позволит на порядок повысить производительность систем на его основе в ИИ и HPC-задачах в сравнении с современными решениями.

Процессор назван в честь Грейс Хоппер (Grace Hopper), одного из пионеров информатики и создательницы целого ряда основополагающих концепций и инструментов программирования. И это имя нам уже встречалось в контексте NVIDIA — в конце 2019 года компания зарегистрировала торговую марку Hopper для MCM-решений.

Компания не готова раскрыть полные технически характеристики новинки, которая станет доступна в начале 2023 года, но приводит некоторые интересные детали. В частности, процессор будет использовать Arm-ядра Neoverse следующего поколения (надо полагать, уже на базе ARMv9), которые позволят получить в SPECrate2017_int_base результат выше 300. Для сравнения — система с парой современных AMD EPYC 7763 в том же бенчмарке показывает результат на уровне 800.

Вторая особенность Grace — использование памяти LPDRR5X (с ECC, естественно). В сравнении с DDR4 она будет иметь вдвое большую пропускную способность (ПСП) и в 10 раз меньшее энергопотребление. Число и скорость каналов памяти не уточняются, но говорится о суммарной ПСП в более чем 500 Гбайт/с на процессор. А у того же EPYC 7763 теоретический пик ПСП чуть больше 200 Гбайт/с. Очевидно, что другие процессоры к моменту выхода NVIDIA Grace тоже увеличат и производительность, и пропускную способность памяти. Гораздо более интересный вопрос, сколько линий PCIe 5.0 они смогут предложить. Если допустить, что у них будет 128 линий, то общая скорость для них составит чуть больше 500 Гбайт/с.

И NVIDIA этого мало — процессоры Grace получат прямое, кеш-когерентное подключение к GPU по NVLInk 4.0 (14x) с суммарной пропускной способностью боле 900 Гбайт/с. GPU тоже, как и прежде, будут общаться напрямую друг с другом по NVLink. Скорость связи между двумя CPU превысит 600 Гбайт/с, а в сборке из четырёх модулей CPU+GPU суммарная скорость обмена данными между системной памятью процессоров и GPU в такой mesh-сети составит 2 Тбайт/с. Но самое интересное тут то, что у памяти CPU (LPDDR5X) и GPU (HBM2e) в такой системе будет единое адресное пространство. Собственно говоря, таким образом компания решает давно назревшую проблему дисбаланса между скоростью обмена данными и доступным объёмом памяти в различных частях вычислительного комплекса.

Для сравнения можно посмотреть на архитектуру нынешних DGX A100 или HGX. У каждого ускорителя A100 есть 40 или 80 Гбайт набортной памяти HBM2e (1555 или 2039 Гбайт/с соответственно) и NVLInk-подключение на 600 Гбайт/c, которое идёт к коммутатору NVSwitch, имеющего суммарную пропускную способность 1,8 Тбайт/с. Всего таких коммутаторов шесть, а объединяют они восемь ускорителей. Внутри этой NVLInk-фабрики сохраняется достаточно высокая скорость обмена данными, но как только мы выходим за её пределы, ситуация меняется.

 Схема NVIDIA DGX A100. Источник: Microway

Схема NVIDIA DGX A100. Источник: Microway

Каждый ускоритель A100 имеет второй интерфейс — PCIe 4.0 x16 (64 Гбайт/с), который уходит к PCIe-коммутатору, каковых в DGX A100 имеется четыре. Коммутаторы, в свою очередь, объединяют между собой сетевые 200GbE-адаптеры (суммарно в дуплексе до 1,6 Тбайт/с для связи с другими DGX A100), NVMe-накопители и CPU. У каждого CPU может быть довольно много памяти (от 512 Гбайт), но её скорость ограничена упомянутыми выше 200 Гбайт/c.

Узким местом во всей этой схеме является как раз PCIe, поэтому переход исключительно на NVLInk позволит NVIDIA получить большой объём памяти при сохранении приемлемой ПСП, не тратясь лишний раз на дорогую локальную HBM2e у каждого GPU. Впрочем, если компания не переведёт на NVLink и собственные будущие DPU Bluefield-3 (400GbE), которые будут скармливать связке CPU+GPU по, например, GPUDirect Storage данные из внешних NVMe-oF хранилищ и объединять узлы DGX POD, то PCIe 5.0 в составе Grace стоит ждать. Это опять-таки упростит и повысит эффективность масштабирования.

В целом, всё это необходимо из-за быстрого роста объёма ИИ-моделей — в GPT-3 уже 175 млрд параметров, а в течение пары лет можно ожидать модели уже с 0,5-1 трлн параметров. Им потребуются не только новые решения для обучения, но и для инференса. То же касается и физических расчётов — модели становятся всё больше и требовательнее + ИИ здесь тоже активно внедряется. Параллельно с разработкой Grace NVIDIA развивает программную экосистему вокруг Arm и своих решений, готовя почву для будущих систем на их основе.

Одной из такой систем станет суперкомпьютер Alps в Швейцарском национальном компьютерном центре (Swiss National Computing Centre, CSCS), который придёт на смену Piz Daint (12 место в нынешнем рейтинге TOP500). Этот суперкомпьютер серии HPE Cray EX, в частности, сможет в семь раз быстрее обучить модель GPT-3, чем машина NVIDIA Selene (5 место в TOP500). Впрочем, на нём будут выполняться и классические HPC-задачи в области метеорологии, физики, химии, биологии, экономики и так далее. Ввод в эксплуатацию намечен на 2023 год. Тогда же в США появится аналогичная машина от HPE в Лос-Аламосской национальной лаборатории (LANL). Она дополнит систему Crossroads, использующую исключительно процессоры Intel Xeon Sapphire Rapids.

Постоянный URL: http://servernews.ru/1037136
Система Orphus