Материалы по тегу: вычисления

09.06.2018 [08:00], Сергей Карасёв

В США запущен самый мощный в мире суперкомпьютер

Окриджская Национальная лаборатория Министерства энергетики США (Oak Ridge National Laboratory) объявила о вводе в строй вычислительной системы Summit — самого производительного на планете суперкомпьютера.

До сегодняшнего дня самым мощным на Земле вычислительным комплексом являлся китайский Sunway TaihuLight, занимающий первое место в ноябрьском рейтинге Тор500. Его быстродействие составляет 93 петафлопса (квадриллиона операций с плавающей запятой в секунду), а пиковая производительность теоретически может достигать 125 петафлопсов.

Представленная на этой неделе система Summit использует гибридную архитектуру CPU–GPU. Она полагается на аппаратные решения IBM и NVIDIA. Пиковая производительность заявлена на уровне 200 петафлопсов.

Новый суперкомпьютер состоит из 4608 вычислительных серверов, каждый из которых содержит два процессора IBM Power9, насчитывающих 22 ядра. Таким образом, суммарное количество вычислительных ядер превышает 200 тыс.

Кроме того, в состав каждого сервера входят шесть ускорителей NVIDIA Tesla V100. Общее количество таких карт в системе составляет более 27 тыс.

Вычислительный комплекс использует в общей сложности свыше 10 Пбайт памяти. Задействованы высокоскоростные соединения. Комплекс затрачивает такое количество энергии, которого хватило бы для удовлетворения потребностей 8100 домохозяйств.

Суперкомпьютер планируется использовать в самых разных областях. Среди них названы: астрофизика, разработка передовых материалов, поиск новых лекарственных препаратов и пр. Система Summit начнёт использоваться для реализации ряда проектов уже в текущем году. 

Постоянный URL: http://servernews.ru/970962
08.05.2018 [13:00], Геннадий Детинич

Qualcomm планирует выйти из бизнеса по выпуску серверных процессоров

Ещё один разработчик собирается сойти с новой дистанции — покинуть зарождающийся рынок серверных платформ на архитектуре ARM. Причём не просто новичок, как, например, компания Calxeda, которая свернула разработки в 2014 году, а один из главных сторонников продвижения серверных решений на ARM — компания Qualcomm.

Как сообщает информагентство Bloomberg со ссылкой на анонимные источники внутри компании, в настоящий момент руководство Qualcomm зондирует почву на предмет выбора одного из вариантов: просто ликвидировать подразделение по разработке серверных процессоров или найти покупателя на этот вид деятельности. В любом случае, это окажет негативное влияние на сообщество сторонников серверных процессоров на ядрах ARM. Расцвет серверных платформ на архитектурах ARM ожидался не позже 2016 года. На дворе истекает первая половина 2018 года, а массовых решений в этой области как не было, так и нет.

Интересно, что прошло всего лишь чуть больше полугода после старта коммерческих поставок 10-нм 48-ядерных процессоров Qualcomm Centriq 2400. По словам разработчиков, процессоры Centriq 2400 по энергоэффективности и по показателю стоимости существенно опережали 28-ядерные модели процессоров Intel Xeon Platinum 8180. В ноябре компания Microsoft показала сервер на процессорах Qualcomm Centriq 2400 и явную заинтересованность в подобных решениях.

Выглядит Cenriq практически так же, как и обычные Xeon, Opteron или EPYC

Выглядит Cenriq практически так же, как и обычные Xeon, Opteron или EPYC

С тех пор ничего нового об использовании процессоров Centriq 2400 в каких-либо системах не сообщалось, а тишина в данном случае свидетельствует об отсутствии интереса к новинкам. Всё снова вернулось к x86-совместимым платформам Intel Xeon, тем более, что как раз прошлой осенью вышли первые серверные модели Xeon на архитектуре Skylake, и все дружно начали закупать проверенные временем решения.

Постоянный URL: http://servernews.ru/969391
26.04.2018 [15:49], Алексей Степин

Verne Global представила новый сервис hpcDIRECT

Компания Verne Global, известный производитель и поставщик решений для ЦОД и сферы супервычислений, анонсировала системы hpcDIRECT, главное назначение которых — работа в составе кластеров, задействованных в области вычислительной биологии и генетики. Новинки относятся к модному нынче классу «супервычисления как облачный сервис», и клиент может выбирать из многочисленных опций.

К примеру, в зависимости от задачи, Verne Global предлагает разные ускорители на базе графических процессоров, выделенные или разделяемые хранилища данных, а также гарантирует наличие скоростной сетевой среды. Типичная спецификация включает в себя 32 физических ядра с частотой 2,1 ГГц, 512 Гбайт оперативной памяти (16 Гбайт на ядро) и сетевое подключение InfiniBand FDR со скоростью 56 Гбит/с.

Решения hpcDIRECT устанавливаются в безопасном ЦОД, оптимизированном с учётом сферы супервычислений, и обслуживаются командой квалифицированных специалистов. Клиентам предоставляется настоящая вычислительная мощность без виртуализации; иными словами, процессорную производительность не приходится делить с другими заказчиками. Стоимость трёхлетней резервации мощностей стоит 0,03 евро за одно ядро в час, мгновенный доступ «по требованию» дороже — 0,07 евро. Подробности можно узнать на сайте сервиса по приведённой выше ссылке.

Постоянный URL: http://servernews.ru/968954
26.04.2018 [14:20], Андрей Крупин

Mail.Ru Group запустила сервис облачных вычислений на базе NVIDIA GPU

Компания Mail.Ru Group дополнила свою облачную B2B-инфраструктуру Mail.Ru Cloud Solutions (MCS) новым сервисом высокопроизводительных GPU-вычислений, предназначенным для решения задач, связанных с искусственным интеллектом и машинным обучением.

В основу нового сервиса положены  GPU-ускорители Tesla V100 с архитектурой NVIDIA Volta, производительность которых в задачах глубокого обучения достигает внушительных 125 терафлопс. Пользователи MCS могут заказать нужный объём вычислительных ресурсов с посекундной тарификацией для сокращения расходов и в случае необходимости оперативно масштабировать облачную инфраструктуру.

«Распределённые вычисления — задача непростая. Не имея прямого доступа к вычислительным мощностям, разработчики не могут быстро проверить свою идею, что тормозит развитие IT в России. Mail.Ru Group стремится сделать современные технологии максимально доступными. С запуском облачных вычислений на GPU любой желающий может взять в аренду современные графические процессоры и проверить свои гипотезы. Мы искренне надеемся, что доступ к возможностям высокопроизводительных GPU NVIDIA в облаке даст плоды в виде новых технологических стартапов», — прокомментировал запуск нового продукта руководитель направления облачных и бизнес-сервисов Mail.Ru Group Егор Ганин.

Получить доступ к системе облачных вычислений Mail.Ru Cloud Solutions на базе NVIDIA GPU можно по ссылке mcs.mail.ru/gpu.

Материалы по теме:

Источник:

Постоянный URL: http://servernews.ru/968993
24.04.2018 [09:27], Алексей Степин

Экосистема OpenPOWER готова к массовому развёртыванию

Буквально на днях мы рассказывали читателям о первых тестах платформы POWER9. Результаты оказались неоднозначными, но это можно списать на отсутствие оптимизации ПО с учётом особенностей и возможностей новых процессоров. Важно другое: лёд тронулся, и инициатива OpenPOWER начинает давать первые плоды на рынке, причём не только в виде серверов и кластерных систем. Хотя последнее тоже очень важно, ведь системами на базе POWER9 заинтересовалась Google, да и суперкомпьютер Summit внушает уважение своими параметрами. Крис Салливан (Chris Sullivan), заместитель директора отдела биовычислений (Center for Genome Research and Biocomputing, CRGB) университета штата Орегон, считает портирование приложений на платформу POWER9 достаточно лёгкой задачей — за один‒два месяца удалось пересобрать около 2000 приложений, тогда как количество уже имеющихся программ для x86 составляет около 4000.

Главным признаком того, что экосистема OpenPOWER готова к масштабному развёртыванию, является тот факт, что IBM решила всерьёз поддержать Linux и стандарт little endian, сперва в процессорах POWER8, а затем и в POWER9. Особенно важно последнее, так как порядок записи байтов является фундаментальным: код, созданный на системе, работающей в режиме big-endian (BE, от старшего к младшему), без подготовки в принципе не заработает на платформе, где основополагающим режимом является little-endian (LE, от младшего к старшему). Первый режим традиционно использовался в больших системах IBM и многих других процессорных архитектурах, второй же прочно прижился в среде x86 и по мере роста её популярности завоевал и научно-исследовательский сектор. Но теперь запуск имеющихся приложений, многие из которых не имеют аналогов, стал возможен, поскольку новые системы IBM поддерживают оба режима. На самом деле с приходом POWER8 программное обеспечение «внутри» работает в режиме big-endian (BE), но в LE-приложениях порядок данных меняется автоматически, что прозрачно для операционной системы, приложений, и, разумеется, самого пользователя.

Компиляторы, такие как XLC или GCC, могут компилировать код в обычном режиме PPC или же в режиме PPCLE. Всё это облегчает поддержку такой распространённой в научном мире ОС, как Linux. Ещё в ноябре прошлого года Red Hat анонсировала поддержку LE для POWER9 и с тех пор интерес к системам IBM POWER с поддержкой LE стабильно растёт. Это не может не радовать всех, кто связан с инициативой OpenPOWER, а также энтузиастов, уставших от засилья x86. Ведь такой ход со стороны IBM позволит использовать новшества вроде NVLink, OpenCAPI или PCI Express 4.0 в привычном Linux-окружении. Некоторые сложности создаёт оптимизация старого ПО с учётом SSE или SSE2, но в целом проблема решаема, считают представители IBM. Конечной целью является привлечение в ряды сторонников новой платформы крупных пользователей, таких как CGRB (Center for Genome Research and Biocomputing). К примеру, CRGB запускает порядка 20 тысяч задач в день, имеет в своём распоряжении 5000 процессоров, более четырёх петабайт хранилищ данных и генерирует порядка 4‒9 терабайт данных в день.

Постоянный URL: http://servernews.ru/968781
13.04.2018 [15:28], Сергей Карасёв

Предложен кубит новой конструкции для квантовых компьютеров

Международная группа учёных из России, Великобритании и Германии создала альтернативную конструкцию сверхпроводникового кубита — основы квантовых компьютеров.

Напомним, что квантовые вычислительные системы оперируют квантовыми битами, или кубитами. Они могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии. А это обеспечивает колоссальную производительность при решении задач определённых типов.

Как теперь сообщается, исследователям удалось создать принципиально новый кубит, основанный не на джозефсоновском переходе, представляющем собой разрыв в сверхпроводнике, а на сплошной сверхпроводящей нано-проволоке. В работе приняли участие отечественные специалисты из Российского квантового центра, НИТУ «МИСиС», МФТИ и Сколтеха, а также их коллеги из Университета Лондона и Национальной физической лаборатории в Теддингтоне (Великобритания), Университета Карлсруэ и Института фотонных технологий (Германия).

Новый кубит основан на эффекте квантового проскальзывания фазы — контролируемого периодического разрушения и восстановления сверхпроводимости в сверхтонкой (около 4 нм) нано-проволоке, которая в обычном состоянии имеет довольно большое сопротивление.

Ожидается, что новое решение по сравнению с «обычными» кубитами обеспечит не меньшую (а, возможно, даже большую) функциональность и при этом будет гораздо более простым в изготовлении. Подробнее об изысканиях учёных можно узнать здесь

Постоянный URL: http://servernews.ru/968344
11.04.2018 [10:50], Сергей Карасёв

Достижение Microsoft поможет в создании более точного квантового компьютера

Группа исследователей Microsoft из Делфтского технического университета в Нидерландах провела эксперимент, результаты которого помогут в создании квантового компьютера, превосходящего по точности современные решения в десятки тысяч раз.

Специалисты экспериментально подтвердили существование фермиона Майораны. Он уникален тем, что является собственной античастицей и одновременно обладает свойствами полупроводника и суперпроводника. Существование таких частиц впервые рассмотрел итальянский физик Этторе Майорана в 1930-х годах.

Кубиты (квантовые биты) вычислителя, построенного на основе названных частиц, как ожидается, будут менее подвержены внешним влияниям и смогут давать более точные результаты, а значит, показывать большую производительность.

Если учёные преуспеют в создании работающих кубитов на основе фермиона Майораны, то рано или поздно клиенты Microsoft смогут пользоваться ресурсами квантового компьютера через облачную платформу Azure.

Предполагается, что системы нового типа смогут с высочайшей производительностью решать определённые задачи. Это, в частности, расчёты, связанные с криптографией, поиском новых лекарственных препаратов и пр. 

Постоянный URL: http://servernews.ru/968247
10.04.2018 [01:20], Алексей Степин

Тайны коммутатора NVIDIA NVSwitch

На прошедшей недавно конференции GTC (GPU Technology Conference) корпорация NVIDIA представила новый внутренний интерконнект NVSwitch, целью которой является эффективное объединение в сеть множества вычислительных процессоров Volta. Именно NVSwitch является сердцем демонстрационной системы DGX-2, аналоги которой планируется использовать в дальнейшем для постройки суперкомпьютера нового поколения Saturn V. С момента официального анонса новой технологии о ней стали известны новые детали, включая данные о внутренней архитектуре самого коммутатора NVSwitch. Как известно, вычислительные ускорители имеют три фундаментальных ограничения, влияющих на эффективность их работы в составе кластерной системы: производительность подсистемы ввода-вывода, пропускная способность памяти и объём этой самой памяти.

Кристалл NVSwitch

Кристалл NVSwitch

Последние два, впрочем, обходятся достаточно малой кровью: ускорители Volta могут нести на борту до 32 Гбайт памяти типа HBM2, которая, к тому же, может прокачивать до 900 Гбайт/с. Но по мере масштабирования системы проблема I/O встаёт всё острее, поскольку скорости, приведённые выше, сетям и сетевым средам пока недоступны, а значит, на задачах с большой степенью параллелизации главным фактором, ограничивающим производительность, может стать именно сеть. Это подтверждают и результаты тестирования суперкомпьютеров с помощью новой методики, о чём мы недавно рассказывали нашим читателям.

Его функциональные блоки

Его функциональные блоки

Решить эту проблему и призвана технология NVIDIA NVSwitch. Само сердце технологии, чип-коммутатор может работать в разных топологиях. Как уже было сказано, впервые он найдёт применение в системе DGX-2, поставки которой должны начаться в третьем квартале. NVIDIA пока не предполагает использование этого коммутатора для сетевого соединения нескольких «корпусов», то есть, в качестве, «внешнего интерконнекта», но это не значит, что разработчики суперкомпьютеров не решат попробовать новинку и в качестве такого решения.

Выглядит снимок кристалла NVSwitch довольно впечатляюще, что неудивительно, поскольку состоит этот кристалл из 2 миллиардов транзисторов. Предположительно, в его производстве задействован 12-нм техпроцесс класса FinFET, разработанный TSMC, но компания-разработчик хранит по этому поводу молчание, по крайней мере, пока. Архитектурно в составе NVSwitch можно выделить два блока по 8 портов NVLink плюс два дополнительных порта этой шины. Система соединений (кроссбар) работает в неблокирующем режиме, так что любой из портов NVLink в правом или левом модуле может напрямую работать с одним из двух портов в верхнем модуле. Это существенно отличает реальный чип от опубликованных в момент анонса данных о технологии NVSwitch.

Один из слайдов NVIDIA

Один из слайдов NVIDIA

На предыдущих слайдах изображено 16 чипов в 8 парах, соединённых друг с другом на скорости 300 Гбайт/с (150 Гбайт/с в каждую сторону) с тотальной пропускной способностью, достигающей 2,4 Тбайт/с. Но NVSwitch имеет 18 портов, поэтому при подключении 16 процессоров Volta остаётся место для дальнейшего расширения конфигурации. Если блок-схема DGX-2, продемонстрированная на презентации, верна, то в ней имеется 12 коммутаторов NVSwitch, но тогда не все порты остаются задействованными.

Это позволяет предположить, что 16-процессорая версия DGX-2 является пилотной, а дизайн NVSwitch создан с заделом на будущее и позволяет создавать, к примеру, 32-процессорные системы в одном корпусе-узле. Пока этому мешает текущая версия модуля backplane, которой оснащается DGX-2, но архитектурного запрета на создание системы с теми же 32 вычислительными GPU нет. Точных данных о топологии DGX-2 пока нет, на имеющемся слайде видны по шесть «толстых» шин на каждую «половину» кластера. С учётом свободных портов, скорость «общения половин» между собой может достигать 6 Гбайт/с (3 Гбайт/с в каждую сторону). 

Из этого слайда топология DGX-2 не ясна

Из этого слайда топология DGX-2 не ясна

Были различные предположения о топологии, включая схему «двойное кольцо», но в худшем сценарии такая схема соединяет два ГП через шесть «скачков» (hops), а это не лучший вариант с точки зрения латентности. NVIDIA употребляет термин «fully connected crossbar internally» по отношению к NVSwitch, но не говорит этого про систему в целом и про соединение между двумя половинами DGX-2. Если предположить, что для соединения используется пара «верхних» портов коммутатора, то ГП могут быть соединены попарно, но тогда для полноценного соединения всей системы в единое целое потребуются иные механизмы, например, дополнительные соединения PCI Express, что выглядит не слишком осмысленным, если сравнить скорости PCIe и декларируемые NVIDIA цифры, относящиеся к NVLink.

Как оказалось впоследствии и было подтверждено официально, 12 «лишних» портов NVLink в NVSwitch не задействованы в DGX-2. Топология внутренней сети в новой системе проще, и каждый из шести портов в Volta соединён с одним из NVSwitch «сверху». Аналогичным образом подключается восьмёрка ГП «снизу». Такая схема позволяет добиться латентности в два «хопа» между двумя любыми ГП на одной «половине» системы, а если требуется коммуникация между разными половинами, то количество «хопов» увеличивается до трёх.

А так она выглядит на самом деле

А так она выглядит на самом деле

Разумеется, это не единственный сценарий: в данном варианте использовано всего 6 чипов NVLink для каждой половины, но ничто не мешает увеличить их число до, скажем, двенадцати. Новая система весьма эффективна: для демонстрации NVIDIA использовала пару серверов DGX-1 с 8 ГП Volta V100 в каждом. Они были соединены между собой четырьмя каналами InfiniBand с совокупной пропускной способностью 400 Гбит/с. Сравнительные тесты показали более чем двукратное (от 2,4 до 2,7x) превосходство системы DGX-2, использующей новые технологии с NVSwitch во главе.

DGX-2 ставит новые рекорды

DGX-2 ставит новые рекорды

Выглядит новая технология очень многообещающе, но интересно будет взглянуть, как она поведёт себя при увеличении количества вычислительных узлов, ведь модули DGX-2 придётся как-то соединять между собой, и не поглотит ли это все преимущества в случае постройки достаточно крупного кластера? Есть вариант NUMA, но практический предел, достигнутый на сегодня, составляет 128 процессоров; более того, после 32 процессоров в такой схеме критическую роль начинают играть очереди запросов и задержки. Как только DGX-2 начнёт поставляться массово, мы, скорее всего, узнаем ответ.

Постоянный URL: http://servernews.ru/968189
03.04.2018 [13:45], Сергей Карасёв

ПаВТ 2018: самый мощный суперкомпьютер России нарастил производительность

Научно-исследовательский вычислительный центр МГУ имени М.В.Ломоносова и Межведомственный суперкомпьютерный центр РАН представили двадцать восьмую редакцию рейтинга самых мощных компьютеров СНГ — списка Тор50.

Лидером рейтинга уже семь редакций подряд остаётся суперкомпьютер «Ломоносов-2» производства компании «Т-Платформы», установленный в Московском государственном университете имени М.В.Ломоносова. Причём эта система была модернизирована. Её производительность на тесте Linpack поднялась с 2,1 петафлопса (квадриллиона операций с плавающей запятой в секунду) до 2,48 петафлопса, а пиковое быстродействие увеличилось с 2,96 до 4,95 петафлопса.

На втором месте оказался новый суперкомпьютер производства компаний «T-Платформы» и CRAY, установленный в Главном вычислительном центре Федеральной службы по гидрометеорологии и мониторингу окружающей среды. Производительность этого комплекса на тесте Linpack составляет 1,2 петафлопса.

Замыкает первую тройку суперкомпьютер «Ломоносов», установленный в Московском государственном университете имени М.В.Ломоносова. Его быстродействие составляет около 0,9 петафлопса.

Любопытно, что все системы в рейтинге используют в качестве основных процессоров решения Intel. Число гибридных суперкомпьютеров, использующих для вычислений графические процессоры, по сравнению с предыдущей редакцией рейтинга уменьшилось с 19 до 18, а количество систем, использующих ускорители Intel Xeon Phi, осталось равным 9.

Суммарная производительность систем на тесте Linpack за полгода выросла с 8,7 до 10,7 петафлопса. Суммарная пиковая производительность систем списка составила 17,4 петафлопса против 13,4 петафлопса в предыдущей редакции.

Количество систем, используемых в науке и образовании, осталось равным 18; количество систем, ориентированных на конкретные прикладные исследования, уменьшилось с 16 до 14; число систем, используемых в промышленности, уменьшилось с 5 до 4; число систем в финансовой области осталось равным 3. 

Постоянный URL: http://servernews.ru/967909
30.03.2018 [09:00], Андрей Крупин

2 апреля в Ростове-на-Дону стартует международная научная конференция «Параллельные вычислительные технологии»

В понедельник, второго апреля в Донском государственном техническом университете начнёт работу международная научная конференция «Параллельные вычислительные технологии (ПаВТ) 2018», посвящённая развитию и применению суперкомпьютерных вычислительных технологий в различных областях науки и техники, включая аппаратное и программное обеспечение, специализированные языки и пакеты. Мероприятие будет проходить в течение четырёх дней и охватит различные теоретические и практические аспекты использования высокопроизводительных систем в России и мире.

Мероприятие «ПаВТ 2018» станет площадкой для обсуждения перспектив развития параллельных вычислительных технологий, представления результатов, полученных ведущими научными группами в использовании суперкомпьютерных технологий для решения задач науки и техники, а также обмена опытом. Участники конференции озвучат современные тренды развития HPC-индустрии на примере обработки больших данных, представят аппаратно-программные решения для высокопроизводительных вычислений и задач искусственного интеллекта, расскажут о технологиях параллельного программирования и прочих наработках в суперкомпьютерной сфере.

В первый день работы конференции будет объявлена 28-я редакция списка Tоп-50 самых мощных суперкомпьютеров СНГ. Во все дни работы «ПаВТ 2018» будет действовать суперкомпьютерная выставка, на которой ведущие производители аппаратного и программного обеспечения представят свои новейшие разработки в области высокопроизводительных вычислений.

Организаторами конференции «ПаВТ 2018» являются Федеральное агентство научных организаций России и Суперкомпьютерный консорциум университетов России. Мероприятие проводится при поддержке Российского фонда фундаментальных исследований, а также компаний Intel, РСК, NVIDIA, Hewlett Packard Enterprise, AMD и ряда других.

Подробнее с программной конференции можно ознакомиться на сайте ПаВТ.рф.

Материалы по теме:

Источник:

Постоянный URL: http://servernews.ru/967726
Система Orphus