Материалы по тегу: ии-агент
24.03.2025 [08:30], Владимир Мироненко
NVIDIA представила проект AI-Q Blueprint Platform для создания продвинутых ИИ-агентовПризнавая, что одних моделей, включая свежие Llama Nemotron с регулируемым «уровнем интеллекта», недостаточно для развёртывания ИИ на предприятии, NVIDIA анонсировала проект AI-Q Blueprint, представляющий собой фреймворк с открытым исходным кодом, позволяющий разработчикам подключать базы знаний к ИИ-агентам, которые могут действовать автономно. Blueprint был создан с помощью микросервисов NVIDIA NIM и интегрируется с NVIDIA NeMo Retriever, что упрощает для ИИ-агентов извлечение мультимодальных данных в различных форматах. С помощью AI-Q агенты суммируют большие наборы данных, генерируя токены в 5 раз быстрее и поглощая данные петабайтного масштаба в 15 раз быстрее с лучшей семантической точностью. Проект основан на новом наборе инструментов NVIDIA AgentIQ для бесшовного, гетерогенного соединения между агентами, инструментами и данными, опубликованном на GitHub. Он представляет собой программную библиотеку с открытым исходным кодом для подключения, профилирования и оптимизации команд агентов ИИ, работающих на основе корпоративных данных для создания многоагентных комплексных (end-to-end) систем. Его можно легко интегрировать с существующими многоагентными системами — как по частям, так и в качестве комплексного решения — с помощью простого процесса адаптации, который обеспечивает полную поддержку. Набор инструментов AgentIQ также повышает прозрачность с полной отслеживаемостью и профилированием системы, что позволяет организациям контролировать производительность, выявлять неэффективность и иметь детальное представление о том, как генерируется бизнес-аналитика. Эти данные профилирования можно использовать с NVIDIA NIM и библиотекой с открытым исходным кодом NVIDIA Dynamo для оптимизации производительности агентских систем. Благодаря этим инструментам предприятиям будет проще объединять команды ИИ-агентов в таких решениях, как Agentforce от Salesforce, поиск Atlassian Rovo в Confluence и Jira, а также ИИ-платформа ServiceNow для трансформации бизнеса, чтобы устранить разрозненность, оптимизировать задачи и сократить время ответа с дней до часов. AgentIQ также интегрируется с такими фреймворками и инструментами, как CrewAI, LangGraph, Llama Stack, Microsoft Azure AI Agent Service и Letta, позволяя разработчикам работать в своей предпочтительной среде. Azure AI Agent Service интегрирован с AgentIQ для обеспечения более эффективных агентов ИИ и оркестровки многоагентных фреймворков с использованием семантического ядра, которое полностью поддерживается в AgentIQ. Возможности ИИ-агентов уже широко используются в различных отраслях. Например, платёжная система Visa использует ИИ-агентов для оптимизации кибербезопасности, автоматизируя анализ фишинговых писем в масштабе. Используя функцию профилирования AI-Q, Visa может оптимизировать производительность и затраты агентов, максимально увеличивая роль ИИ в эффективном реагировании на угрозы, сообщила NVIDIA.
24.03.2025 [01:37], Владимир Мироненко
NVIDIA анонсировала ИИ-модели Llama Nemotron с регулируемым «уровнем интеллекта»NVIDIA анонсировала новое семейство ИИ-моделей Llama Nemotron с расширенными возможностями рассуждения. Основанные на моделях Llama с открытым исходным кодом от Meta✴ Platforms, модели от NVIDIA предназначены для предоставления разработчикам основы для создания продвинутых ИИ-агентов, которые могут от имени своих пользователей независимо или с минимальным контролем работать в составе связанных команд для решения сложных задач. «Агенты — это автономные программные системы, предназначенные для рассуждений, планирования, действий и критики своей работы», — сообщила Кари Бриски (Kari Briski), вице-президент по управлению программными продуктами Generative AI в NVIDIA на брифинге с прессой, пишет VentureBeat. «Как и люди, агенты должны понимать контекст, чтобы разбивать сложные запросы, понимать намерения пользователя и адаптироваться в реальном времени», — добавила она. По словам Бриски, взяв Llama за основу, NVIDIA оптимизировала модель с точки зрения требований к вычислениям, сохранив точность ответов. NVIDIA сообщила, что улучшила новое семейство моделей рассуждений в ходе дообучения, чтобы улучшить многошаговые математические расчёты, кодирование, рассуждения и принятие сложных решений. Это позволило повысить точность ответов моделей до 20 % по сравнению с базовой моделью и увеличить скорость инференса в пять раз по сравнению с другими ведущими рассуждающими open source моделями. Повышение производительности инференса означают, что модели могут справляться с более сложными задачами рассуждений, имеют расширенные возможности принятия решений и позволяют сократить эксплуатационные расходы для предприятий, пояснила компания. Модели Llama Nemotron доступны в микросервисах NVIDIA NIM в версиях Nano, Super и Ultra. Они оптимизированы для разных вариантов развёртывания: Nano для ПК и периферийных устройств с сохранением высокой точности рассуждения, Super для оптимальной пропускной способности и точности при работе с одним ускорителем, а Ultra — для максимальной «агентской точности» в средах ЦОД с несколькими ускорителями. Как сообщает NVIDIA, обширное дообучение было проведено в сервисе NVIDIA DGX Cloud с использованием высококачественных курируемых синтетических данных, сгенерированных NVIDIA Nemotron и другими открытыми моделями, а также дополнительных курируемых наборов данных, совместно созданных NVIDIA. Обучение включало 360 тыс. часов инференса с использованием ускорителей H100 и 45 тыс. часов аннотирования человеком для улучшения возможностей рассуждения. По словам компании, инструменты, наборы данных и методы оптимизации, используемые для разработки моделей, будут в открытом доступе, что предоставит предприятиям гибкость в создании собственных пользовательских рвссуждающих моделей. Одной из ключевых функций NVIDIA Llama Nemotron является возможность включать и выключать опцию рассуждения. Это новая возможность на рынке ИИ, утверждает компания. Anthropic Claude 3.7 имеет несколько схожую функциональность, хотя она является закрытой проприетарной моделью. Среди моделей с открытым исходным кодом IBM Granite 3.2 тоже имеет переключатель рассуждений, который IBM называет «условным рассуждением». Особенность гибридного или условного рассуждения заключается в том, что оно позволяет системам исключать вычислительно затратные этапы рассуждений для простых запросов. NVIDIA продемонстрировала, как модель может задействовать сложные рассуждения при решении комбинаторной задачи, но переключаться в режим прямого ответа для простых фактических запросов. NVIDIA сообщила, что целый ряд партнёров уже использует модели Llama Nemotron для создания новых мощных ИИ-агентов. Например, Microsoft добавила Llama Nemotron и микросервисы NIM в Microsoft Azure AI Foundry. SAP SE использует модели Llama Nemotron для улучшения возможностей своего ИИ-помощника Joule и портфеля решений SAP Business AI. Кроме того, компания использует микросервисы NVIDIA NIM и NVIDIA NeMo для повышения точности завершения кода для языка ABAP. ServiceNow использует модели Llama Nemotron для создания ИИ-агентов, которые обеспечивают повышение производительности и точности исполнения задач предприятий в различных отраслях. Accenture сделала рассуждающие модели NVIDIA Llama Nemotron доступными на своей платформе AI Refinery. Deloitte планирует включить модели Llama Nemotron в свою недавно анонсированную платформу агентского ИИ Zora AI. Atlassian и Box также работают с NVIDIA, чтобы гарантировать своим клиентам доступ к моделям Llama Nemotron.
24.01.2025 [23:38], Владимир Мироненко
Платформа GenAI от DigitalOcean упростит создание ИИ-агентовОблачный провайдер DigitalOcean представил платформу GenAI, которая позволяет использовать базовые модели от сторонних поставщиков для создания и развёртывания агентов ИИ за считанные минуты без необходимости глубоких знаний в области ИИ или машинного обучения. Как сообщает DigitalOcean, интуитивно понятная работа в GenAI позволяет клиентам вне зависимости от уровня подготовки настраивать агентов с доступом к надёжным конвейерам данных и многоагентным командам. DigitalOcean GenAI позволяет компаниям создавать чат-боты на основе базовых моделей сторонних поставщиков (Anthropic, Meta✴, Mistral и др.) для анализа документов, семантического поиска, создания изображений и т.д. Платформа создана так, чтобы быть независимой от фреймворков. Платформа упрощает и создание агентов, специфичных для конкретных вариантов использования, привнося контекстные данные в базовые LLM. Клиенты смогут не только извлекать неструктурированные данные из файлов, но и структурированные данные из баз данных или обращаясь к API, чтобы дополнять подсказки и задействовать Retrieval Augmented Generation (RAG), обеспечивая агентам доступ к точной и актуальной информации. С помощью вызываемых функций можно дописать кастомный код, чтобы расширить возможности своего агента. Встроенные ограничители (guardrails) позволяют повысить достоверность ответов агента, помогая отфильтровывать неправильные или ненадлежащие результаты. А возможность частных подключений и наличие готового интерфейса для чат-ботов упрощают запуск этих агентов на веб-сайте клиента. В будущем появится возможность обращаться к источникам данным по URL, поддержка конвейеров AgentOps и CI/CD, тонкая настройка моделей и многое другое.
25.12.2024 [14:45], Руслан Авдеев
Synopsys: в 2025 году ИИ будет напрямую сотрудничать с ИИ над разработкой чиповНа днях глава по стратегии развития ИИ-технологий компании Synopsys Стелиос Диамантидис (Stelios Diamantidis) заявил, что в 2025 году наступит следующая фаза внедрения ИИ. По его словам, ИИ-агенты начнут сотрудничать со своими собратьями с минимальным вмешательством человека, сообщает EE Times. Если ранее ИИ-боты представляли собой рудиментарные системы с заранее заданными правилами и деревьями решений, то теперь они эволюционировали в сложные агентные системы, способные понимать человеческую речь в произвольной форме, генерировать контент, постоянно учиться и менять своё поведение в результате обучения. Такие ИИ-агенты могут быть использованы в специальных случаях и применяться только для определённых приложений, но скоро ситуация может измениться, когда один ИИ-агент сможет взаимодействовать с другим. В блоге Диамантидис добавил, что ИИ-агенты обучаются для улучшения интеграции и взаимодействия, включая разработку чипов. ![]() Источник изображения: Daniel Lonn/unsplash.com В Synopsys сообщили о внутреннем прикладном использовании подобных разработок. По результатам пилотного тестирования внутри компании, генеративный ИИ, как ожидается, сэкономит не менее 250 тыс. часов рабочего времени — сотрудники смогут более продуктивно потратить высвободившееся время на работу с клиентами. Диамантидис добавил, что высокоспециализированные ИИ-агенты могли бы комбинировать и анализировать бессчётные объёмы информации, касающейся разработки полупроводников. Эти задачи могут быть связаны с созданием архитектуры чипа, оптимизацией энергопотребления и др. Сотрудничество ИИ с ИИ может выявлять скрытые закономерности, обеспечивать точные рекомендации по оптимизации проектирования чипов и повышению их производительности.
28.08.2024 [00:10], Владимир Мироненко
NVIDIA представила шаблоны ИИ-приложений NIM Agent Blueprints для типовых бизнес-задачNVIDIA анонсировала NIM Agent Blueprints, каталог предварительно обученных, настраиваемых программных решений, предоставляющий разработчикам набор инструментов для создания и развёртывания приложений генеративного ИИ для типовых вариантов использования, таких как аватары для обслуживания клиентов, RAG, виртуальный скрининг для разработки лекарственных препаратов и т.д. Предлагая бесплатные шаблоны для частых бизнес-задач, компания помогает разработчикам ускорить создание и вывод на рынок ИИ-приложений. NIM Agent Blueprints включает примеры приложений, созданных с помощью NVIDIA NeMo, NVIDIA NIM и микросервисов партнёров, примеры кода, документацию по настройке и Helm Chart'ы для быстрого развёртывания. Предприятия могут модифицировать NIM Agent Blueprints, используя свои бизнес-данные, и запускать приложения генеративного ИИ в ЦОД и облаках (в том числе в рамках NVIDIA AI Enterprise), постоянно совершенствуя их благодаря обратной связи. На текущий момент NIM Agent Blueprints предлагают готовые рабочие процессы (workflow) для систем обслуживания клиентов, для скрининга с целью автоматизированного поиска необходимых соединений при разработке лекарств и для мультимодального извлечения данных из PDF для RAG, что позволит обрабатывать огромные объёмы бизнес-данных для получения более точных ответов, благодаря чему ИИ-агенты чат-боты службы станут экспертами по темам компании. С примерами можно ознакомиться здесь. Каталог NVIDIA NIM Agent Blueprints вскоре станет доступен у глобальных системных интеграторов и поставщиков технологических решений, включая Accenture, Deloitte, SoftServe и World Wide Technology (WWT). А такие компании как Cisco, Dell, HPE и Lenovo предложат полнофункциональную ИИ-инфраструктуру с ускорителями NVIDIA для развёртывания NIM Agent Blueprints. NVIDIA пообещала, что ежемесячно будут выпускаться дополнительные шаблоны для различных бизнес-кейсов. |
|