Материалы по тегу: суперкомпьютер

25.01.2022 [03:33], Владимир Мироненко

Meta✴ и NVIDIA построят самый мощный в мире ИИ-суперкомпьютер RSC: 16 тыс. ускорителей A100 и хранилище на 1 Эбайт

Meta (ранее Facebook) анонсировала новый крупномасштабный исследовательский кластер — ИИ-суперкомпьютер Meta AI Research SuperCluster (RSC), предназначенный для ускорения решения задач в таких областях, как обработка естественного языка (NLP) с обучением всё более крупных моделей и разработка систем компьютерного зрения.

На текущий момент Meta RSC состоит из 760 систем NVIDIA DGX A100 — всего 6080 ускорителей. К июлю этого года, как ожидается, система будет включать уже 16 тыс. ускорителей. Meta ожидает, что RSC станет самым мощным ИИ-суперкомпьютером в мире с производительностью порядка 5 Эфлопс в вычислениях смешанной точности. Близкой по производительность системой станет суперкомпьютер Leonardo, который получит 14 тыс. NVIDIA A100.

 Изображения: ***

Изображения: Meta

Meta RSC будет в 20 раз быстрее в задачах компьютерного зрения и в 3 раза быстрее в обучении больших NLP-моделей (счёт идёт уже на десятки миллиардов параметров), чем кластер Meta предыдущего поколения, который включает 22 тыс. NVIDIA V100. Любопытно, что даже при грубой оценке производительности этого кластера он наверняка бы попал в тройку самых быстрых машин нынешнего списка TOP500.

Новый же кластер создаётся с прицелом на возможность обучения моделей с триллионом параметров на наборах данных объёмом порядка 1 Эбайт. Именно такого объёма хранилище планируется создать для Meta RSC. Сейчас же система включает массив Pure Storage FlashArray объемом 175 Пбайт, 46 Пбайт кеш-памяти на базе систем Penguin Computing Altus и массив Pure Storage FlashBlade ёмкостью 10 Пбайт. Вероятно, именно этой СХД и хвасталась Pure Storage несколько месяцев назад, не уточнив, правда, что речь шла об HPC-сегменте.

Итоговая пропускная способность хранилища должна составить 16 Тбайт/с. Meta RSC сможет обучать модели машинного обучения на реальных данных, полученных из социальных сетей компании. В качестве основного интерконнекта используются коммутаторы NVIDIA Quantum и адаптеры HDR InfiniBand (200 Гбит/с), причём, судя по видео, с жидкостным охлаждением. Каждому ускорителю полагается выделенное подключение. Фабрика представлена двухуровневой сетью Клоза.

Meta также разработала службу хранения AI Research Store (AIRStore) для удовлетворения растущих требований RSC к пропускной способности и ёмкости. AIRStore выполняет предварительную обработку данных для обучения ИИ-моделей и предназначена для оптимизации скорости передачи. Компания отдельно подчёркивает, что все данные проходят проверку на корректность анонимизации. Более того, имеется сквозное шифрование — данные расшифровываются только в памяти узлов, а ключи регулярно меняются.

Однако ни о стоимости проекта, ни о потребляемой мощности, ни о физическом местоположении Meta RSC, ни даже о том, почему были выбраны узлы DGX, а не HGX (или вообще другие ускорители), Meta не рассказала. Для NVIDIA же эта машина определённо стала очень крупным и важным заказом.

Постоянный URL: http://servernews.ru/1058640
16.11.2021 [03:33], Игорь Осколков

TOP500: уж ноябрь на дворе, а экзафлопса не видать

Последняя версия публичного рейтинга самых производительных в мире суперкомпьютеров TOP500 так и осталась без экзафлопсных машин. Китай не захотел включать в него две системы такого класса и пошёл обходным путём, номинировав работы своих учёных на премию Гордона Белла — в соответствующих научных работах даны неполные характеристики машин и показатели их производительности.

Поэтому лидером списка остаётся обновлённая японская система Fugaku, 7,6 млн ядер которой выдают 442 Пфлопс. И она всё ещё втрое быстрее своего ближайшего конкурента Summit. Первые результаты сборки Frontier в список попасть не успели. Всего в ноябрьском рейтинге есть порядка 70 новых систем, но, как и прежде, больше половины из них — однотипные системы Lenovo, массово устанавливаемые в Китае. На Китай вообще приходится более трети (34,6%) систем в списке. На втором месте находятся США (29,8%), а на третьем — Япония (6,4%).

По суммарной производительности Топ-3 тот же, но порядок иной: США (32,5%), Япония (20,7%), Китай (17,5%). В число лидеров также входят Германия, Франция, Нидерланды, Канада, Великобритания, Южная Корея и Россия. У РФ теперь есть сразу семь машин в списке с суммарной производительностью 73,715 Пфлопс. Для сравнения — Perlmutter (5 место) после апгрейда выдаёт 70,87 Пфлопс, а у Южной Кореи тоже есть семь машин, но с чуть более высокой суммарной производительностью в 82,177 Пфлопс.

 Суперкомпьютер Chervonenkis (Фото: Яндекс)

Суперкомпьютер Chervonenkis (Фото: Яндекс)

К уже имевшимся в TOP500 российским системам MTS GROM (294 место), Lomonosov-2 (Ломоносов-2, 241 место) и Christofari (Кристофари, 72 место) добавились Christofari Neo (Кристофари Нео, 43 место), а также сразу три системы Яндекса: Ляпунов (Lyapunov, 40 место), Галушкин (Galushkin, 36 место) и Червоненкис (Chervonenkis, 19 место). Примечательно, что все российские системы этого года используют AMD EPYC Rome и NVIDIA A100, а также интерконнект Infininiband.

Машины для МТС и Сбера сделала сама NVIDIA (это всё DGX), а вот у Яндекса путь особый. Ляпунов (12,81 Пфлопс) создан китайским Национальным университетом оборонных технологий (National University of Defense Technology, NUDT) и Inspur на базе серверов NF5488A5 (AMD EPYC 7662@2 ГГц + A100 40 Гбайт). Червоненкис (21,53 Пфлопс) и Галушкин (16,02 Пфлопс) разработаны IPE, NVIDIA и Tyan. В этих системах используются EPYC 7702 (тоже 64-ядерные с базовой частотой 2 ГГц) и более новые A100 (80 Гбайт).

Среди прочих новых систем TOP500 особо выделяется Voyager-EUS2, которая замыкает Топ-10. Это ещё система на базе обновлённых инстансов Microsoft Azure ND A100 v4 с 80-Гбайт версией A100. Однако ещё одной облачной машиной уже никого не удивить, в отличие от совершенно неожиданного возврата японской PEZY, пропавшей с радаров после скандала 2017 года. Новая ZettaScaler3.0 занимает 453 место и базируется на AMD EPYC 7702P и фирменных ускорителях PEZY-SC3.

 Изображение: OGAWA, Tadashi (twitter.com/ogawa_tter)

Изображение: OGAWA, Tadashi (twitter.com/ogawa_tter)

В целом, последний год был удачным и для AMD, и для NVIDIA. Первая почти втрое нарастила число систем на базе EPYC — их теперь в списке 74 (или почти треть новых участников списка), если учитывать Naples/Hygon (таких систем 3). Если же смотреть более детально именно на CPU, то тут лидером всё равно остаётся Intel, хотя она и потеряла несколько процентных пунктов за последние полгода — всего 408 машин используют её процессоры. Правда, новейших Ice Lake-SP среди них всего 10, тогда как у EPYC Milan уже 17.

Без акселераторов обходятся 350 суперкомпьютеров списка, зато из 150 оставшихся 143 используют различные поколения ускорителей NVIDIA. Удивительно, но ни одной системы с ускорителями AMD Instinct в ноябрьском рейтинге нет. Остальные акселераторы представлены в единичном экземпляре. И это либо устаревшие системы, либо экзотика из Китая и Японии. Последняя в лице MN-3 всё ещё лидирует по энергоэффективности в Green500.

Систем с Infiniband в списке 178, с Ethernet — 242. Как обычно, по производительности систем лидирует именно IB — 44,5% против 22,4% у Ethernet. Это, к слову, несколько отличается от показателей HPC-индустрии в целом, где в количественном выражении у них практически равные доли. На Omni-Path пришлось 40 систем в TOP500, и столько же на проприетарные интерконнекты. Тут интересно разве что появление второй машины с Atos BXI V2.

Среди производителей по количеству машин лидируют Lenovo (180 шт., это в основном уже упомянутые типовые развёртывания в Китае), HPE (84 шт., сюда же входит наследие Cray и SGI) и Inspur (50 шт.). По производительности картина иная, в Топ-3 входят HPE, Fujitsu (во многом благодаря Fugaku) и Lenovo. По HPC-рынку в целом, согласно данным Hyperion Research, в денежном выражении тройка лидеров включает HPE, Dell и Fujitsu (да, опять «виноват» Fugaku).

Постоянный URL: http://servernews.ru/1053797
22.10.2021 [20:03], Руслан Авдеев

Для обеспечения работы суперкомпьютера El Capitan потребуется 28 тыс. тонн воды и 35 МВт энергии

К моменту ввода в эксплуатацию в 2023 году суперкомпьютер El Capitan на базе AMD EPYC Zen4 и Radeon Instinct, как ожидается, будет иметь самую высокую в мире производительность — более 2 Эфлопс. А это означает, что ему потребуются гигантские мощности для питания и охлаждения. Ливерморская национальная лаборатория (LLNL), в которой и будет работать El Capitan, поделилась подробностями о масштабном проекте, призванном обеспечить HPC-центр необходимой инфраструктурой.

В основе плана модернизации лежит проект Exascale Computing Facility Modernization (ECFM) стоимостью около $100 млн. В его рамках будет обновлена уже существующая в LLNL инфраструктура. Для реализации проекта необходимо получить очень много разрешений от местных регуляторов и очень тесно взаимодействовать с местными поставщиками электроэнергии. Тем не менее, LLNL заявляет, что проект «почти готов», по некоторым оценкам — на 93%. Функционировать новая инфраструктура должна с мая 2022 года (с опережением графика).

Сам проект стартовал ещё в 2019 году и, согласно планам, должен быть полностью завершён в июле 2022 года. В его рамках модернизируют территорию центра, введённого в эксплуатацию в 2004 году, общей площадью около 1,4 га. Если раньше центр, в котором работали системы вроде лучшего для 2012 года суперкомпьютера Sequoia (ныне выведенного из эксплуатации), обеспечивал подачу до 45 МВт, то теперь инфраструктура рассчитана уже на 85 МВт.

Конечно, даже для El Capitan такие мощности будут избыточны — ожидается, что суперкомпьютер будет потреблять порядка 30-35 МВт. Однако LLNL заранее думает о «жизнеобеспечении» преемника El Capitan. Следующий суперкомпьютер планируется ввести в эксплуатацию до того, как его предшественник будет отключён в 2029 году. Кроме того, для новой системы потребуется установка нескольких 3000-тонных охладителей. Если раньше общая ёмкость системы охлаждения составляла 10 000 т воды, то теперь она вырастет до 28 000 т.

Постоянный URL: http://servernews.ru/1051952
16.07.2021 [17:31], Алексей Степин

Японский облачный суперкомпьютер ABCI подвергся модернизации

Популярность идей машинного обучения и искусственного интеллекта приводит к тому, что многие страны и организации планируют обзавестись HPC-системами, специально предназначенными для этого класса задач. В частности, Токийский университет совместно с Fujitsu модернизировал существующую систему ABCI (AI Bridging Cloud Infrastructure), снабдив её новейшими процессорами Intel Xeon и ускорителями NVIDIA.

Как правило, когда речь заходит о суперкомпьютерах Fujitsu, вспоминаются уникальные наработки компании в сфере HPC — процессоры A64FX, но ABCI имеет более традиционную гетерогенную архитектуру. Изначально этот облачный суперкомпьютер включал в себя вычислительные узлы на базе Xeon Gold и ускорителей NVIDIA V100, объединённых 200-Гбит/с интерконнектом. В качестве файловой системы применена разработка IBM — Spectrum Scale. Это одна систем, специально созданных для решения задач искусственного интеллекта, при этом доступная независимым исследователям и коммерческим компаниям.

Так, 86% пользователей ABCI не входят в состав Японского национального института передовых технических наук (AIST); их число составляет примерно 2500. Но система явно нуждалась в модернизации. Как отметил глава AIST, с 2019 года загруженность ABCI выросла вчетверо, и сейчас на ней запущено 360 проектов, 60% из которых от внешних заказчиков. Сценарии использования самые разнообразные, от распознавания видео до обработки естественных языков и поиска новых лекарств.

 Новые узлы ABCI заметно отличаются по архитектуре от старых

Новые узлы ABCI 2.0 заметно отличаются по архитектуре от старых

Как и в большей части систем, ориентированных на машинное обучение, упор при модернизации ABCI был сделан на вычислительную производительность в специфических форматах, включая FP32 и BF16. Изначально в состав ABCI входило 1088 узлов, каждый с четырьмя ускорителями V100 формата SXM2 и двумя процессорами Xeon Gold 6148. После модернизации к ним добавилось 120 узлов на базе пары Xeon Ice Lake-SP и восьми ускорителей A100 формата SXM4. Здесь вместо InfiniBand EDR используется уже InfiniBand HDR.

 Стойка с новыми вычислительными узлами ABCI 2.0

Стойка с новыми вычислительными узлами ABCI 2.0

Согласно предварительным ожиданиям, производительность обновлённого суперкомпьютера должна вырасти практически в два раза на задачах вроде ResNet50, в остальных случаях заявлен прирост производительности от полутора до трёх раз. На вычислениях половинной точности речь идёт о цифре свыше 850 Пфлопс, что вплотную приближает ABCI к системам экза-класса. Разработчики также надеются повысить энергоэффективность системы путём применения специфических ускорителей, включая ASIC, но пока речь идёт о связке Intel + NVIDIA.

ABCI и сейчас можно назвать экономичной системой — при максимальной общей мощности комплекса 3,25 МВт сам суперкомпьютер при полной нагрузке потребляет лишь 2,3 МВт. Поскольку система ориентирована на предоставление вычислительных услуг сторонним заказчикам, модернизировано и системное ПО, в котором упор сместился в сторону контейнеризации.

Постоянный URL: http://servernews.ru/1044432
28.05.2021 [00:33], Владимир Мироненко

Perlmutter стал самым мощным ИИ-суперкомпьютером в мире: 6 тыс. NVIDIA A100 и 3,8 Эфлопс

В Национальном вычислительном центре энергетических исследований США (NERSC) Национальной лаборатории им. Лоуренса в Беркли состоялась торжественная церемония, посвящённая официальному запуску суперкомпьютера Perlmutter, также известного как NERSC-9, созданного HPE в партнёрстве с NVIDIA и AMD.

Это самый мощный в мире ИИ-суперкомпьютер, базирующийся на 6159 ускорителях NVIDIA A100 и примерно 1500 процессорах AMD EPYC Milan. Его пиковая производительность в вычислениях смешанной точности составляет 3,8 Эфлопс или почти 60 Пфлопс в FP64-вычислениях.

Perlmutter основан на платформе HPE Cray EX с прямым жидкостным охлаждением и интерконнектом Slingshot. В состав системы входят как GPU-узлы, так и узлы с процессорами. Для хранения данных используется файловая система Lustre объёмом 35 Пбайт скорость обмена данными более 5 Тбайт/с, которая развёрнута на All-Flash СХД HPE ClusterStor E1000 (тоже, к слову, на базе AMD EPYC).

 Perlmutter (Phase 1). Фото: NERSC

Perlmutter (Phase 1). Фото: NERSC

Установка Perlmutter разбита на два этапа. На сегодняшней презентации было объявлено о завершении первого (Phase 1) этапа, который начался в ноябре прошлого года. В его рамках было установлено 1,5 тыс. вычислительных узлов, каждый из которых имеет четыре ускорителя NVIDIA A100, один процессор AMD EPYC Milan и 256 Гбайт памяти. На втором этапе (Phase 2) в конце 2021 года будут добавлены 3 тыс. CPU-узлов c двумя AMD EPYC Milan и 512 Гбайт памяти., а также ещё ещё 20 узлов доступа и четыре узла с большим объёмом памяти.

 NERSC

NERSC

Также на первом этапе были развёрнуты служебные узлы, включая 20 узлов доступа пользователей, на которых можно подготавливать контейнеры с приложениями для последующего запуска на суперкомпьютере и использовать Kubernetes для оркестровки. Среда разработки будет включать NVDIA HPC SDK в дополнение к наборам компиляторов CCE (Cray Compiling Environment), GCC и LLVM для поддержки различных средств параллельного программирования, таких как MPI, OpenMP, CUDA и OpenACC для C, C ++ и Fortran.

 Фото: DESI

Фото: DESI

Сообщается, что для Perlmutter готовится более двух десятков заявок на вычисления в области астрофизики, прогнозирования изменений климата и в других сферах. Одной из задач для новой системы станет создание трёхмерной карты видимой Вселенной на основе данных от DESI (Dark Energy Spectroscopic Instrument). Ещё одно направление, для которого задействуют суперкомпьютер, посвящено материаловедению, изучению атомных взаимодействий, которые могут указать путь к созданию более эффективных батарей и биотоплива.

Постоянный URL: http://servernews.ru/1040628
15.04.2021 [01:31], Владимир Мироненко

TSMC остановит выпуск Arm-процессоров Phytium — судьба китайского экзафлопсного суперкомпьютера Tianhe-3 под вопросом

Тайваньская компания Taiwan Semiconductor Manufacturing Company (TSMC) приостановила поставку чипов по новым заказам китайской компании Phytium, которая на прошлой неделе была добавлена властями США в «чёрный» список Министерства торговли. Внесение компаний в этот перечень означает запрет для американских компаний на работу с ними и предоставление продуктов или услуг без получения соответствующих лицензий.

Иностранные компании, такие как TSMC, теоретически могут продолжать работать с компаниями из «чёрного списка», но США могут оказывать на них давление через их американских поставщиков. Например, когда США занесли Huawei в «чёрный» список, TSMC была вынуждена отказаться от сотрудничества с ней, поскольку многие ключевые технологии, лежащие в основе её производственных процессов, были разработаны американскими фирмами.

Пока неясно, оказывалось ли сейчас подобное давление на TSMC, и были ли ею прекращены поставки остальным шести суперкомпьютерным китайским фирмам из «чёрного» списка. Как сообщает South China Morning Post, TSMC выполнит заказы, размещённые Phytium до внесения в «чёрный список», но больше поставлять ей чипы не будет.

 Прототип Tianhe-3. Фото: Xinhua

Прототип Tianhe-3. Фото: Xinhua

Предполагается, что Phytium стоит за развёртыванием систем высокопроизводительных вычислений для китайского военно-промышленного комплекса, использующего её разработки при создании гиперзвуковых ракет. Компания сотрудничает с Оборонным научно-техническим университетом Народно-освободительной армии Китая (NUDT), который ранее создал суперкомпьютеры Tianhe-1 и Tianhe-2, в своё время занимавшие первые строчки рейтинга TOP500.

Tianhe-3, один из трёх проектов китайских суперкомпьютеров экзафлопсного класса, должен был быть закончен в прошлом году, однако осенью было объявлено, что из-за пандемии коронавируса сроки сдвигаются. Летом 2020 года в распоряжении исследователей уже был прототип новой машины, имевший теоретическую производительность 3,146 Пфлопс. Он включал 512 плат с тремя процессорами Phytium MT2000+ и 128 плат с четырьмя Phytium FT2000+.

Точные параметры этих 7-нм Arm-чипов не приводятся, но в одной из свежих научных публикаций упоминается, что на каждый 64-ядерный FT2000+ в прототипе Tianhe-3 приходилось 64 Гбайт RAM. А каждый MT2000+ можно поделить на четыре NUMA-узла с 32 ядрами и 16 Гбайт RAM, то есть, судя по описанию, это 128-ядерный чип, о котором ранее ничего не было известно. Теперь же судьба этих CPU и суперкомпьютера Tianhe-3 и вовсе под вопросом.

Постоянный URL: http://servernews.ru/1037383
22.06.2020 [18:20], Игорь Осколков

ARM-суперкомпьютер Fugaku поднялся на вершину рейтингов TOP500, HPCG и HPL-AI

Конечно же, речь идёт о японском суперкомпьютере Fugaku на базе ARM-процессоров A64FX, который досрочно начал трудиться весной этого года. Эта машина стала самым мощным суперкомпьютером в мире сразу в трёх рейтингах: классическом TOP500, современном HPCG и специализированном HPL-AI.

Суперкомпьютер состоит из 158976 узлов, которые имеют почти 7,3 млн процессорных ядер, обеспечивающих реальную производительность на уровне 415,5 Пфлопс, то есть Fugaku почти в два с половиной раза быстрее лидера предыдущего рейтинга, машины Summit. Правда, оказалось, что с точки зрения энергоэффективности новая ARM-система мало чем отличается от связки обычного процессора и GPU, которой пользуется большая часть суперкомпьютеров. Так что на первое место в Green500 она не попала.

Однако на стороне Fugaku универсальность — понижение точности вычислений вдвое приводит к удвоение производительности. Так что машина имеет впечатляющую теоретическую пиковую скорость вычислений 4,3 Эопс на INT8 и не менее впечатляющие 537 Пфлопс на FP64. Это помогло занять её первое место в бенчмарке HPL-AI, которые использует вычисления разной точности. А общая архитектура процессора, включающего набортную память HBM2, и системы, использующей интерконнект Tofu, способствовали лидерству в бенчмарке HPCG, который оценивает эффективность машины в целом.

Постоянный URL: http://servernews.ru/1013963
09.06.2020 [19:49], Юрий Поздеев

Суперкомпьютер Neocortex: 800 тыс. ядер Cerebras для ИИ

Питтсбургский суперкомпьютерный центр (PSC) получит $5 млн от Национального научного фонда на создание суперкомпьютера нового типа Neocortex, который объединяет ИИ-серверы Cerebras CS-1 и HPE SuperDome Flex в единую систему с общей памятью. Планируется, что решение будет введено в эксплуатацию до конца 2020 года.

Каждый сервер Cerebras CS-1 имеет процессор Cerebras Wafer Scale Engine (WSE), который содержит 400 000 ядер, оптимизированных для работы с ИИ (46 225 мм2, 1,2 трлн транзисторов). В паре с ними работает HPE SuperDome Flex, который используется для предварительной обработки информации и постобработки после Cerebras. SuperDome Flex представлен в максимальной комплектации, то есть с 32 процессорами Intel Xeon, 24 Тбайт оперативной памяти, 205 Тбайт флеш-памяти и 24 интерфейсными картами.

Каждый сервер Cerebras CS-1 подключается к SuperDome Flex через 12 каналов со скоростью 100 Гбит/с каждый. Процессор WSE способен обрабатывать 9 Пбайт данных в секунду, что, по подсчетам Nystrom, эквивалентно примерно миллиону фильмов в HD-качестве. Характеристики решения действительно впечатляют!

 Neocortex назван в честь области мозга, отвечающей за функции высокого порядка, включая когнитивные способности, сновидения и формирование речи

Neocortex назван в честь области мозга, отвечающей за функции высокого порядка, включая когнитивные способности, сновидения и формирование речи

Архитектура решения строилась таким образом, чтобы не пришлось разбивать вычислительные блоки на множество узлов — это позволило снизить задержки в обработке информации и ускорить обучение моделей ИИ. Cerebras CS-1 разрабатывался специально для ИИ, поэтому он имеет преимущества перед серверами с графическими ускорителями, которые хорошо справляются с матричными операциями, но имеют многие конструктивные ограничения.

По заявлениям Neocortex, сервер CS-1 будет на несколько порядков мощнее системы PSC Bridges-AI. Один сервер Neocortex CS-1 будет эквивалентен примерно 800-1500 серверов с традиционной архитектурой с использованием графических ускорителей. Задачи, в которых Neocortex покажет себя максимально эффективно относятся к классу нейронных сетей DCIGN (deep convolutional inverse graphics networks) и RNN (recurrent neural networks). Если говорить простыми словами, то это более точное прогнозирование погоды, анализ геномов, поиск новых материалов и разработка новых лекарств.

PSC, помимо Neocortex, запускает еще и новое поколение системы Bridges-2, которое будет развернуто осенью 2020 года. Таким образом, до конца этого года будут введены в эксплуатацию два мощных суперкомпьютера для ИИ. Neocortex и Bridges-2 будут поддерживать самые популярные фреймворки машинного обучения, что позволит создать гибкую и мощную экосистему для ИИ, анализа данных, моделирования и симуляции.

До 90% машинного времени Neocortex будет выделяться через XSEDE (Extreme Science and Engineering Discovery Environment), финансируемую NSF организацию, которая координирует совместное использование передовых цифровых услуг, включая суперкомпьютеры и ресурсы для визуализации и анализа данных, с исследователями на национальном уровне.

Постоянный URL: http://servernews.ru/1013005
19.11.2019 [00:29], Андрей Созинов

Ноябрьский TOP500: больше китайских систем и меньше американских, и первая система на AMD EPYC Rome

Уже традиционно в рамках конференции SC была опубликована свежая версия TOP500, рейтинга пятисот самых производительных суперкомпьютеров в мире.

В новой версии списка стало больше систем из Китая, и в то же время сократилось количество систем, расположенных в США. Значительно увеличилась общая производительность всех систем, однако десятка лидеров рейтинга изменений не претерпела.

За последние шесть месяцев число китайских суперкомпьютеров в рейтинге TOP500 увеличилась с 219 до 228, и в итоге их доля составила 45,6 %. В то же время количество американских суперкомпьютеров достигло минимума в 117 систем, что составляет 23,4 %. Однако общая производительность систем из США выше — 37,1 % от общей, в то время как доля Китая здесь составляет 32,2 %. Суммарная производительность всех пятисот самых мощных суперкомпьютеров в мире составляет 1,65 Экзафлопс.

Российских машин в рейтинге три. На 29 месте TOP500 теперь находится суперкомпьютер Кристофари, принадлежащий Сбербанку.

Количество систем, использующих ускорители вычислений и сопроцессоры также возросло, со 134 до 145. Большинство из них использует продукты на базе NVIDIA Volta, a также Pascal и Kepler. Что касается центральных процессоров, то здесь безоговорочным лидером остаётся Intel — 94,8 % систем из TOP500 построены на её чипах.

И здесь же хотелось бы отметить, что в свежем рейтинге TOP500 появилась первая система на процессорах AMD EPYC Rome. Это французский суперкомпьютер Joliot-Curie, построенный на платформе AtoS BullSequana XH2000, которая включает 64-ядерные процессоры AMD EPYC 7H12. Данный суперкомпьютер обладает производительностью 9,4 Пфлопс, он разместился на 59 строке рейтинга TOP500.

Значительно увеличилась и минимальная производительность систем рейтинга TOP500. Теперь пятисотая система в рейтинге обладает производительностью в 1,142 Петафлопс. Полгода назад эта система располагалась на 399 месте. А чтобы претендовать на сотое место в рейтинге, системе теперь необходимо обладать производительностью более чем в 2,57 Пфлопс.

Рейтинг наиболее энергоэффективных систем — Green500 — возглавила японская система от Fujitsu. Это прототип суперкомпьютера на базе процессоров A64FX, который обеспечивает производительность в 16,9 Гфлопс на 1 ватт энергии. В общем рейтинге TOP500 данная система занимает 159 строку с общей производительностью в 2 Пфлопс.

Интересно, что система обладает всего лишь 36 864 ядрами и не использует ускорители, что делает её результаты ещё более впечатляющими. Кстати, среднее количество ядер на систему из списка TOP500 также увеличилось — с 118 213 до 126 308.

Постоянный URL: http://servernews.ru/997953
19.09.2019 [21:46], Андрей Созинов

Atos BullSequana XH2000 на процессорах EPYC 7H12 установила ряд мировых рекордов

Новая версия суперкомпьютерного узла BullSequana XH2000 компании Atos, построенная на новейших 64-ядерных процессорах AMD EPYC 7H12, смогла установить сразу несколько абсолютных мировых рекордов производительности.

Новинка была протестирована самой Atos в пакете бенчмарков SPECrate 2017, который как раз и предназначен для оценки производительности мощных вычислительных систем. По результатам тестов, новинка претендует на звание рекордсмена среди всех двухпроцессорных систем в четырёх бенчмарках пакета:

На данный момент представленные Atos результаты тестов проходят проверку комитетом SPEC.

Кроме того, Atos заявляет, что система BullSequana XH2000 на базе EPYC 7H12 установила рекорд в бенчмарке HPL Linpack для систем на процессорах AMD. Новинка показала результат в 4,296 Тфлопс, что на 11 % больше результата системы с процессорами AMD EPYC 7742.

 Atos оставляет системы AMD для ряда европейских суперкомпьютеров

Atos оставляет системы AMD для ряда европейских суперкомпьютеров

Прирост производительности обусловлен тем, что средняя рабочая частота процессора EPYC 7H12 выше по сравнению с моделью EPYC 7742. А чтобы справиться с тепловыделением, увеличившимся вместе с частотой, компания Atos использует в BullSequana XH2000 систему жидкостного охлаждения.

Постоянный URL: http://servernews.ru/994340

Входит в перечень общественных объединений и религиозных организаций, в отношении которых судом принято вступившее в законную силу решение о ликвидации или запрете деятельности по основаниям, предусмотренным Федеральным законом от 25.07.2002 № 114-ФЗ «О противодействии экстремистской деятельности»;

Система Orphus