Материалы по тегу: nvidia
|
09.11.2022 [14:50], Владимир Мироненко
Производители специально ухудшают характеристики чипов для китайских серверов, чтобы избежать санкций СШАВ связи с вводом Соединёнными Штатами новых экспортных ограничений на поставки в Китай, производители стали намеренно снижать производительность чипов, чтобы соответствовать требованиям экспортного контроля США и избежать проблем с получением специальных лицензий. Как отметил ресурс The Register, у систем, построенных на чипах NVIDIA, изготовленных на производственных мощностях TSMC для поставок в Китай, характеристики хуже по сравнению с теми, что были ранее. В частности, китайский производитель серверов Inspur указал на использование вместо ускорителя NVIDIA A100 чипа A800, разработанного NVIDIA специально для Китая в соответствии с экспортными ограничениями. Китайские производители H3C и Omnisky тоже представили решения на базе A800. Данный ускоритель, по словам NVIDIA, начала производиться в III квартале этого года. У A800 скорость передачи данных составляет 400 Гбайт/с, тогда как у A100 этот показатель равен 600 Гбайт/с, причём обойти эти ограничения, по словам NVIDIA, невозможно. Речь, судя по всему, идёт о характеристиках интерконнекта NVLink, которые прямо влияют на производительность кластеров из двух и более ускорителей в машинном обучении и других задачах. Изменения касаются 40- и 80-Гбайт вариантов с интерфейсами PCIe и SXM.
Источник изображения: Inspur Между тем ускорители, находящиеся в разработке и выпускаемые TSMC по контракту с Alibaba и стартапом Biren Technology, тоже, как сообщается, имеют пониженную скорость передачи данных. Это позволит выпускать данные чипы на заводе TSMC, не опасаясь санкций США. До этого TSMC приостановила выпуск 7-нм чипов ускорителей Biren BR100 как раз из-за возможных санкций со стороны Вашингтона.
21.09.2022 [19:32], Алексей Степин
NVIDIA представила ускорители L40 и новую Omniverse-платформу OVX на их основеНа конференции GTC 2022 NVIDIA анонсировала второе поколение систем для симуляции и запуска «цифровых двойников» OVX. Это вовсе не развлечение: использование точных моделей реальных физических объектов, пространств и устройств потенциально весьма выгодно, поскольку симуляция городского квартала для обучения автопилотов или фабрики для оценки взаимодействия роботов с живыми работниками априори будет стоить намного меньше, нежели проведение натурных испытаний. Зачастую такие симуляции используют тензорные и матричные вычисления, поэтому основой новой платформы OVX стали новые ускорители NVIDIA L40 с архитектурой Ada Lovelace, располагающие ядрами трассировки лучей третьего поколения и тензорными ядрами четвёртого поколения. Они поддерживают как классический трассировку лучей (ray tracing), так и трассировку путей (path tracing), что важно для корректной симуляции поведения различных материалов.
NVIDIA L40. Здесь и далее источник изображений: NVIDIA Физически L40 представляют собой двухслотовую FHFL-плату расширения PCIe с пассивным охлаждением — теплопакет новинки ограничен рамками 300 Вт. Объём оперативной памяти GDDR6 составляет 48 Гбайт, вдвое больше, нежели у игровых GeForce RTX 4090, и, в отличие от последних, поддерживается совместная работа двух карт в режиме NVLink, что может оказаться полезным в симуляциях с большим объёмом данных. Для вывода изображения служат четыре порта DP 1.4a.
NVIDIA OVX Server Каждый сервер NVIDIA OVX будет содержать 8 ускорителей L40 и три сетевых адаптера ConnectX-7 с портами класса 200GbE и поддержкой шифрования сетевого трафика на лету. От 4 до 16 таких серверов составят OVX POD, а 32 или более —кластер SuperPOD. Такие кластеры станут домом для новой облачной платформы NVIDIA Omniverse Cloud, услуги которой компания планирует предоставлять робототехникам, создателям автономных транспортных средств, «умной инфраструктуры» и вообще всем, кому нужна точная симуляция сложных объектов и систем с качественной визуализацией результатов.
21.09.2022 [01:10], Алексей Степин
NVIDIA представила платформу IGX для «умной» промышленности и медициныПомимо новых GPU с архитектурой Ada компания NVIDIA на конференции GTC 2022 анонсировала множество новинок и не последней из них стала новая периферийная платформа IGX, призванная вывести «умную» промышленность на новый уровень. Главный упор в IGX сделан на обеспечении повышенной безопасности, причём как информационной, так и физической. Использовать совместный труд роботов в промышленности пытаются уже давно, но до недавних пор такие решения были нестандартными и весьма дорогостоящими. IGX призвана обеспечить безопасность, стандартизацию и высокий уровень производительности, достаточный для современной робототехники. Сердцем платформы IGX являются высокоинтегрированные модули серии Jetson AGX Orin, сочетающие в себе достаточно мощный процессор общего назначения, GPU-ускоритель, ускорители ИИ, машинного зрения, а также отдельный сопроцессор sMCU, отвечающий за обеспечение безопасности в проактивном режиме. Последний работает в комплексе с новыми программными расширениями, легко интегрируемыми в большинство коммерческих ОС благодаря сопутствующему программному стеку NVIDIA AI Enterprise.
NVIDIA IGX. Здесь и далее источник изображений: NVIDIA Что касается проактивной защиты, то, к примеру, получив сигнал с видеокамер о том, что человек приближается к «зоне ответственности» роботов, система автоматически изменит траекторию движения последних, предупредит сотрудников, а также на основании полученных данных скорректирует поведение роботов в дальнейшем. Также с помощью технологии «цифровых двойников» можно будет провести симуляцию, дабы заранее выяснить возможные точки потенциально опасных столкновений машин и людей.
NVIDIA IGX сделает подобные сценарии безопасными Производительность центрального модуля IGX составляет 275 Топс в режиме INT8. Обеспечение сетевых возможностей возложено на плечи современного сетевого адаптера ConnectX-7, гарантирующего прецизионные тайминги, позволяющие использовать платформу не только в промышленности, но и в медицине, где вопросы безопасности и точности жизненно важны. Естественно, индустрия нового поколения не может обойтись без унифицированных средств управления и обеспечения кибербезопасности. Весь комплекс решений на базе новой платформы IGX может развёртываться и управляться с единой консоли с помощью облачной системы NVIDIA Fleet Command. За безопасность при этом отвечает выделенный контроллер. На более высоком уровне за интеграцию новой платформы в единую экосистему отвечает фреймворк NVIDIA Metropolis, с помощью которого можно создавать по-настоящему крупномасштабные комплексы, включая целые «умные города».
Программно-аппаратный состав новой платформы Отдельного упоминания заслуживает то, что новая платформа NVIDIA IGX избрана в качестве основы разработчиками медицинских систем, в частности, цифровой и робо-хирургии, такими как Activ Surgical, Moon Surgical и Proximie. Это стало возможным как благодаря аппаратным свойствам платформы, таким как низкая латентность и гарантированное время отклика, так и сочетанию фреймворков MONAI и Clara Holoscan. ![]() Первый позволяет обучать специфические ИИ-модели на основании массивов медицинских данных. Эти модели затем могут интегрироваться с помощью Clara Holoscan SDK в реальные системы ультразвукового сканирования, эндоскопии или робохирургии. Помимо встроенных средств ускорения IGX, Clara Holoscan поддерживает и внешние ускорители NVIDIA RTX A6000, а технология Rivermax обеспечит передачу видеоданных для робота-хирурга на скорости 100 Гбит/с прямо в набортную память GPU. ![]() Комплекты разработчика IGX Orin будут доступны заказчикам в начале следующего года. Уже достигнуты соглашения с производителями встраиваемого оборудования ADLINK, Advantech, Dedicated Computing, Kontron, Leadtek, MBX, Onyx, Portwell, Prodrive Technologies и YUAN; уже испытывает новинку в деле Siemens. Также NVIDIA сотрудничает с Canonical, Red Hat и SUSE в целях обеспечения долговременной поддержки платформы, срок которой составит не менее 10 лет.
26.08.2022 [12:45], Алексей Степин
Интерконнект NVIDIA NVLink 4 открывает новые горизонты для ИИ и HPCПотребность в действительно быстром интерконнекте для ускорителей возникла давно, поскольку имеющиеся шины зачастую становились узким местом, не позволяя «прокормить» данными вычислительные блоки. Ответом NVIDIA на эту проблему стало создание шины NVLink — и компания продолжает активно развивать данную технологию. На конференции Hot Chips 34 было продемонстрировано уже четвёртое поколение, наряду с новым поколением коммутаторов NVSwitch.
Изображения: NVIDIA Возможность использования коммутаторов для NVLink появилась не сразу, изначально использовалось соединение блоков ускорителей по схеме «точка-точка». Но дальнейшее наращивание числа ускорителей по этой схеме стало невозможным, и тогда NVIDIA разработала коммутаторы NVSwitch. Они появились вместе с V100 и предлагали до 50 Гбайт/с на порт. Нынешнее же, третье поколение NVSwitch и четвёртое поколение NVLink сделали важный шаг вперёд — теперь они позволяют вынести NVLink-подключения за пределы узла. Так, совокупная пропускная способность одного чипа NVSwitch теперь составляет 3,2 Тбайт/с в обе стороны в 64 портах NVLink 4 (x2). Это, конечно, отразилось и на сложности самого «кремния»: 25,1 млрд транзисторов (больше чем у V100), техпроцесс TSMC 4N и площадь 294мм2. Скорость одной линии NVLink 4 осталась равной 50 Гбайт/с, но новые ускорители H100 имеют по 18 линий NVLink, что даёт впечатляющие 900 Гбайт/с. В DGX H100 есть сразу четыре NVSwitch-коммутатора, которые объединяют восемь ускорителей по схеме каждый-с-каждым и дополнительно отдают ещё 72 NVLink-линии (3,6 Тбайт/с). При этом у DGX H100 сохраняются прежние 400G-адаптеры Ethernet/InfiniBand (ConnectX-7), по одному на каждый ускоритель, и пара DPU BlueField-3, тоже класса 400G. Несколько упрощает физическую инфраструктуру то, что для внешних NVLink-подключений используются OSFP-модули, каждый из которых обслуживает 4 линии NVLink. Любопытно, что электрически интерфейсы совместимы с имеющейся 400G-экосистемой (оптической и медной), но вот прошивки для модулей нужны будут кастомные. Подключаются узлы DGX H100 к 1U-коммутатору NVLink Switch, включающему два чипа NVSwitch третьего поколения: 32 OSFP-корзины, 128 портов NVLink 4 и агрегированная пропускная способность 6,4 Тбайт/с. В составе DGX SuperPOD есть 18 коммутаторов NVLink Switch и 256 ускорителей H100 (32 узла DGX). Таким образом, можно связать ускорители и узлы 900-Гбайт/с каналом. Как конкретно, остаётся на усмотрение пользователя, но сама NVLink-сеть поддерживает динамическую реконфигурацию на лету. Ещё одна особенность нового поколения NVLink — продвинутые аппаратные SHARP-движки, которые избавляют CPU/GPU от части работ по подготовке и предобработки данных и избавляющие саму сеть от ненужных передач. Кроме того, в NVLink-сети реализованы разделение и изоляция, брандмауэр, шифрование, глубокая телеметрия и т.д. В целом, новое поколение NVLink получило полуторакратный прирост в скорости обмена данными, а в отношении дополнительных сетевых функций он стал трёхкратным. Всё это позволит освоить новые класса HPC- и ИИ-нагрузок, однако надо полагать, что удовольствие это будет недешёвым.
20.08.2022 [22:30], Алексей Степин
NVIDIA поделилась некоторыми деталями о строении Arm-процессоров Grace и гибридных чипов Grace HopperНа GTC 2022 весной этого года NVIDIA впервые заявила о себе, как о производителе мощных серверных процессоров. Речь идёт о чипах Grace и гибридных сборках Grace Hopper, сочетающих в себе ядра Arm v9 и ускорители на базе архитектуры Hopper, поставки которых должны начаться в первой половине следующего года. Многие разработчики суперкомпьютеров уже заинтересовались новинками. В преддверии конференции Hot Chips 34 компания раскрыла ряд подробностей о чипах. Grace производятся с использованием техпроцесса TSMC 4N — это специально оптимизированный для решений NVIDIA вариант N4, входящий в серию 5-нм процессов тайваньского производителя. Каждый кристалл процессорной части Grace содержит 72 ядра Arm v9 с поддержкой масштабируемых векторных расширений SVE2 и расширений виртуализации с поддержкой S-EL2. Как сообщалось ранее, NVIDIA выбрала для новой платформы ядра Arm Neoverse. Процессор Grace также соответствует ряду других спецификаций Arm, в частности, имеет отвечающий стандарту RAS v1.1 контроллер прерываний (Generic Interrupt Controller, GIC) версии v4.1, блок System Memory Management Unit (SMMU) версии v3.1 и средства Memory Partitioning and Monitoring (MPAM). Базовых кристаллов у Grace два, что в сумме даёт 144 ядра — рекордное количество как в мире Arm, так и x86. Внутренние блоки Grace соединяются посредством фабрики Scalable Coherency Fabric (SCF), вариации NVIDIA на тему сети CMN-700, применяемой в дизайнах Arm Neoverse. Производительность данного интерконнекта составляет 3,2 Тбайт/с. В случае Grace он предполагает наличие 117 Мбайт кеша L3 и поддерживает когерентность в пределах четырёх сокетов (посредством новой версии NVLink). Но SCF поддерживает масштабирование. Пока что в «железе» она ограничена двумя блоками Grace, а это уже 144 ядра и 234 Мбайт L3-кеша. Ядра и кеш-разделы (SCC) рапределены по внутренней mesh-фабрике SCF. Коммутаторы (CSN) служат интерфейсами для ядер, кеш-разделов и остальными частями системы. Блоки CSN общаются непосредственно друг с другом, а также с контроллерами LPDDR5X и PCIe 5.0/cNVLink/NVLink C2C. В чипе реализована поддержка PCI Express 5.0. Всего контроллер поддерживает 68 линий, 12 из которых могут также работать в режиме cNVLink (NVLink с когерентностью). x16-интерфейс посредством бифуркации может быть превращен в два x8. Также на приведённой NVIDIA диаграмме можно видеть целых 16 двухканальных контроллеров LPDDR5x. Заявлена ПСП на уровне свыше 1 Тбайт/с для сборки (до 546 Гбайт/с на кристалл CPU). Основной же межчиповой связи NVIDIA видит новую версию NVLink — NVLink-C2C, которая в семь раз быстрее PCIe 5.0 и способна обеспечить двунаправленную скорость передачи данных на уровне до 900 Гбайт/с, будучи при этом в пять раз экономичнее. Удельное потребление у новинки составляет 1,3 пДж/бит, что меньше, нежели у AMD Infinity Fabric с 1,5 пДж/бит. Впрочем, существуют и более экономичные решения, например, UCIe (~0,5 пДж/бит).
Новый вариант NVLink обеспечит кластер на базе Grace Hopper единым пространством памяти. Источник: NVIDIA NVLink-C2C позволяет реализовать унифицированный «плоский» пул памяти с общим адресным пространством для Grace Hopper. В рамках одного узла возможно свободное обращение к памяти соседей. А вот для объединения нескольких узлов понадобится уже внешний коммутатор NVSwitch. Он будет занимать 1U в высоту, и предоставлять 128 портов NVLink 4 с агрегированной пропускной способностью до 6,4 Тбайт/с в дуплексе.
Источник: NVIDIA Производительность Grace также обещает быть рекордно высокой благодаря оптимизированной архитектуре и быстрому интерконнекту. Даже по предварительным цифрам, опубликованным NVIDIA, речь идёт о 370 очках SPECrate2017_int_base для одного кристалла Grace и 740 очках для 144-ядерной сборки из двух кристаллов — и это с использованием обычного компилятора GCC без тонких платформенных оптимизаций. Последняя цифра существенно выше результатов, показанных 128-ядерными Alibaba T-Head Yitian 710, также использующим архитектуру Arm v9, и 64-ядерными AMD EPYC 7773X.
10.08.2022 [22:05], Владимир Мироненко
На пути к Aurora: запущен «тренировочный» суперкомпьютер PolarisАргоннская национальная лаборатория (ANL) Министерства энергетики США объявила о доступности суперкомпьютера Polaris, ранний вариант которого занял 14-е место в последней версии списка TOP500. Он будет использоваться для проведения научных исследований и в качестве испытательного стенда для 2-Эфлопс суперкомпьютера Aurora, запуск которой намечен на ближайшие месяцы. Правда, аппаратно Aurora и Polaris отличаются. Созданная HPE система Polaris состоит из 560 узлов Apollo 6500, каждый из которых оснащён процессором AMD EPYC Milan, четырьмя ускорителями NVIDIA A100 (40 Гбайт) и 512 Гбайт DDR4-памяти. Эти узлы объединены в сеть интерконнектом HPE Slingshot 10 (осенью он будет обновлен до Slingshot 11) и подключены к сдвоенному 100-Пбайт Lustre-хранилищу (Grand и Eagle). Заявленная пиковая производительность должна составить 44 Пфлопс. «Polaris примерно в четыре раза быстрее нашего суперкомпьютера Theta, что делает его самым мощным компьютером в Аргонне на сегодняшний день», — отметил Майкл Папка (Michael Papka), директор Argonne Leadership Computing Facility (ALCF). Он добавил, что возможности Polaris позволят пользователям выполнять моделирование, анализ данных и ИИ-задачи с такими масштабом и скоростью, которые были невозможны с предыдущими вычислительными системами. Помимо работы над подготовкой к запуску Aurora, суперкомпьютер Polaris будет обслуживать внутренние потребности лаборатории, например, работу с комплексом Advanced Photon Source (APS) X-ray. «Благодаря тесной интеграции суперкомпьютеров ALCF с APS, CNM и другими экспериментальными установками мы можем помочь ускорить проведение анализа данных и предоставить информацию, которая позволит исследователям управлять своими экспериментами в режиме реального времени», — заявил Майкл Папка.
24.05.2022 [07:00], Игорь Осколков
NVIDIA представила референсные платформы CGX, OVX и HGX на базе собственных Arm-процессоров GraceНа весенней конференции GTC 2022 NVIDIA поделилась подробностями о грядущих серверных Arm-процессорах Grace Superchip и гибридах Grace Hopper Superchip, а на Computex 2022 представила первые референсные платформы на базе этих чипов для OEM-производителей и объявила о расширении программы NVIDIA Certified. Последнее, впрочем, не означает отказ от x86-систем, поскольку программа будет просто расширена. Да и портирование стороннего и собственного ПО займёт некоторое время. Первые несколько десятков моделей серверов от ASUS, Foxconn, GIGABYTE, QCT, Supermicro и Wiwynn появятся в первой половине 2023 года. Представлены они будут в трёх категориях, причём все, за исключением одной, базируются на «сдвоенных» процессорах Grace Superchip, насчитывающих до 144 ядер. Системы серии OVX, представленной ранее, всё так же будут предназначены для цифровых двойников и Omniverse — NVIDIA продолжает наставить на том, что любое современное производство или промышленное предприятие должно быть интеллектуальным. Arm-версия OVA получит неназванные ускорители NVIDIA и DPU Bluefield-3. Новая платформа NVIDIA CGX очень похожа на OVX — она тоже получит DPU Bluefield-3 и до четырёх ускорителей NVIDIA A16. CGX создана специального для облачных гейминга и работы с графикой. А вот новое поколение платформы NVIDIA HGX гораздо интереснее. Оно заметно отличается от предыдущих, которые в основном представляли собой различные комбинации базовых плат NVIDIA с четырьмя или восемью ускорителями, вокруг которых OEM-партнёры строили системы в меру своих умений и фантазий. Нынешняя инкарнация NVIDIA HGX всё же несколько более комплексная, поскольку сейчас предлагается два варианта узлов, специально спроектированных для высокоплотных систем и явно ориентированных на высокопроизводительные вычисления (HPC). Первый вариант — это 1U-лезвие (до 84 шт. в стандартной стойке), которое включает один процессор Grace Superchip, до 1 Тбайт LPDDR5x-памяти с пропускной способностью (ПСП) до 1 Тбайт/с и DPU BlueField-3. Иные варианты сетевого подключения оставлены на усмотрение конечного производителя. Заявленный уровень TDP составляет 500 Вт, так что на выбор доступны системы с воздушным и жидкостным охлаждением. Второй вариант базируется на гибридных чипах Grace Hopper Superchip, объединяющих в себе посредством шины NVLink-C2C процессорную часть с 512 Гбайт LPDDR5x-памяти и ускоритель NVIDIA H100 c 80 Гбайт HBM3-памяти (ПСП до 3,5 Тбайт/с). Помимо DPU BlueField-3 опционально доступен и интерконнект NVLink 4.0, но и здесь вендору оставлена свобода выбора. Уровень TDP для данной платформы составляет 1 кВт, но вот обойтись одним только воздушным охлаждением (а такой вариант есть) при полном заполнении стойки всеми 42-мя 2U-лезвиями будет трудно.
22.03.2022 [18:48], Игорь Осколков
NVIDIA анонсировала 144-ядерные Arm-процессоры Grace и гибрид Grace HopperГлавным событием GTC 2022 стал анонс новых ускорителей H100 (Hopper), которые станут доступны в III квартале 2022 года. Вслед за ними в первой половине 2023 года появятся давно обещанные CPU Grace и гибридная система Grace Hopper, сочетающие, как понятно из названия, процессоры Grace (ARMv9) и ускорители Hopper. Как и было сказано ранее, для связи всех компонентов между собой будет использоваться mesh-сеть на базе всё той же шины NVLink 4.0 (900 Гбайт/с) с кеш-когерентностью. А сочетание LPDDR5X (с ECC, конечно) и HBM даст суммарный объём памяти до 600 Гбайт с общей полосой пропускания порядка 2 Тбайт/с. Для Grace Hopper компания подготовит полный стек ПО, благо портированием на Arm она начала заниматься ещё 3 года назад. Двухчиповый процессор Grace Superchip для ИИ- и HPC-нагрузок имеет 144 ядра, результат которых в SPECrate2017_int_base составляет 740, что, по словам компании, в полтора раза выше, чему у пары AMD EPYC, использующихся в DGX A100. И это, честно говоря, не такой уж и впечатляющий результат. Но NVIDIA утверждает, что новые CPU вдвое лучше по отношению производительности к энергопотреблению, чем «традиционные серверы» — использование LPDDR5X позволяет добиться пропускной способности памяти в 1 Тбайт/с, а вся сборка CPU+RAM будет потреблять менее 500 Вт. Чипы (или чиплеты, если хотите) в Grace Superchip тоже объединены посредством NVLink, только в данном случае этот интерконнект называется NVLink-C2C (Chip-to-Chip). И его NVIDIA предлагает использовать другим компаниям для создания кастомных сборок, объединяющих необходимые кристаллы, да и сама готова масштабировать и адаптировать свои решения под нужды заказчика. По словам NVIDIA, NVLink-C2C в 25 раз энергоэффективнее PCIe 5.0, а для его реализации нужна в 90 раз меньшая площадь кремния. Шина предлагает высокую скорость (да-да, всё те же 900 Гбайт/с), низкий уровень задержек, поддержку атомарных операций и совместимость с Arm AMBA CHI, CXL и UCIe.
22.03.2022 [18:40], Игорь Осколков
NVIDIA анонсировала 4-нм ускорители Hopper H100 и самый быстрый в мире ИИ-суперкомпьютер EOS на базе DGX H100На GTC 2022 компания NVIDIA анонсировала ускорители H100 на базе новой архитектуры Hopper. Однако NVIDIA уже давно говорит о себе как создателе платформ, а не отдельных устройств, так что вместе с H100 были представлены серверные Arm-процессоры Grace, в том числе гибридные, а также сетевые решения и обновления наборов ПО.
NVIDIA H100 (Изображения: NVIDIA) NVIDIA H100 использует мультичиповую 2.5D-компоновку CoWoS и содержит порядка 80 млрд транзисторов. Но нет, это не самый крупный чип компании на сегодняшний день. Кристаллы новинки изготавливаются по техпроцессу TSMC N4, а сопровождают их — впервые в мире, по словам NVIDIA — сборки памяти HBM3 суммарным объёмом 80 Гбайт. Объём памяти по сравнению с A100 не вырос, зато в полтора раза увеличилась её скорость — до рекордных 3 Тбайт/с. Подробности об архитектуре Hopper будут представлены чуть позже. Пока что NVIDIA поделилась некоторыми сведениями об особенностях новых чипов. Помимо прироста производительности от трёх (для FP64/FP16/TF32) до шести (FP8) раз в сравнении с A100 в Hopper появилась поддержка формата FP8 и движок Transformer Engine. Именно они важны для достижения высокой производительности, поскольку само по себе четвёртое поколение ядер Tensor Core стало втрое быстрее предыдущего (на всех форматах). TF32 останется форматом по умолчанию при работе с TensorFlow и PyTorch, но для ускорения тренировки ИИ-моделей NVIDIA предлагает использовать смешанные FP8/FP16-вычисления, с которыми Tensor-ядра справляются эффективно. Хитрость в том, что Transformer Engine на основе эвристик позволяет динамически переключаться между ними при работе, например, с каждым отдельным слоем сети, позволяя таким образом добиться повышения скорости обучения без ущерба для итогового качества модели. На больших моделях, а именно для таких H100 и создавалась, сочетание Transformer Engine с другими особенностями ускорителей (память и интерконнект) позволяет получить девятикратный прирост в скорости обучения по сравнению с A100. Но Transformer Engine может быть полезен и для инференса — готовые FP8-модели не придётся самостоятельно конвертировать в INT8, движок это сделает на лету, что позволяет повысить пропускную способность от 16 до 30 раз (в зависимости от желаемого уровня задержки). Другое любопытное нововведение — специальные DPX-инструкции для динамического программирования, которые позволят ускорить выполнение некоторых алгоритмов до 40 раз в задачах, связанных с поиском пути, геномикой, квантовыми системами и при работе с большими объёмами данных. Кроме того, H100 получили дальнейшее развитие виртуализации. В новых ускорителях всё так же поддерживается MIG на 7 инстансов, но уже второго поколения, которое привнесло больший уровень изоляции благодаря IO-виртуализации, выделенным видеоблокам и т.д. Так что MIG становится ещё более предпочтительным вариантом для облачных развёртываний. Непосредственно к MIG примыкает и технология конфиденциальных вычислений, которая по словам компании впервые стала доступна не только на CPU. Программно-аппаратное решение позволяет создавать изолированные ВМ, к которым нет доступа у ОС, гипервизора и других ВМ. Поддерживается сквозное шифрование при передаче данных от CPU к ускорителю и обратно, а также между ускорителями. Память внутри GPU также может быть изолирована, а сам ускоритель оснащается неким аппаратным брандмауэром, который отслеживает трафик на шинах и блокирует несанкционированный доступ даже при наличии у злоумышленника физического доступа к машине. Это опять-таки позволит без опаски использовать H100 в облаке или в рамках колокейшн-размещения для обработки чувствительных данных, в том числе для задач федеративного обучения. Но главная инновация — это существенное развитие интерконнекта по всем фронтам. Суммарная пропускная способность внешних интерфейсов чипа H100 составляет 4,9 Тбайт/с. Да, у H100 появилась поддержка PCIe 5.0, тоже впервые в мире, как утверждает NVIDIA. Однако ускорители получили не только новую шину NVLink 4.0, которая стала в полтора раза быстрее (900 Гбайт/с), но и совершенно новый коммутатор NVSwitch, который позволяет напрямую объединить между собой до 256 ускорителей! Пропускная способность «умной» фабрики составляет до 70,4 Тбайт/с. Сама NVIDIA предлагает как новые системы DGX H100 (8 × H100, 2 × BlueField-3, 8 × ConnectX-7), так и SuperPOD-сборку из 32-х DGX, как раз с использованием NVLink и NVSwitch. Партнёры предложат HGX-платформы на 4 или 8 ускорителей. Для дальнейшего масштабирования SuperPOD и связи с внешним миром используются 400G-коммутаторы Quantum-2 (InfiniBand NDR). Сейчас NVIDIA занимается созданием своего следующего суперкомпьютера EOS, который будет состоять из 576 DGX H100 и получит FP64-производительность на уровне 275 Пфлопс, а FP16 — 9 Эфлопс. Компания надеется, что EOS станет самой быстрой ИИ-машиной в мире. Появится она чуть позже, как и сами ускорители, выход которых запланирован на III квартал 2022 года. NVIDIA представит сразу три версии. Две из них стандартные, в форм-факторах SXM4 (700 Вт) и PCIe-карты (350 Вт). А вот третья — это конвергентный ускоритель H100 CNX со встроенными DPU Connect-X7 класса 400G (подключение PCIe 5.0 к самому ускорителю) и интерфейсом PCIe 4.0 для хоста. Компанию ей составят 400G/800G-коммутаторы Spectrum-4.
23.02.2022 [16:35], Руслан Авдеев
«Сингулярность» планетарного масштаба: ИИ-инфраструктура Microsoft включает более 100 тыс. GPU, FPGA и ASICMicrosoft неожиданно раскрыла подробности использования своей распределённой службы планирования «планетарного масштаба» Singularity, предназначенной для управления ИИ-нагрузками. В докладе компании целью Singularity названа помощь софтверному гиганту в контроле затрат путём обеспечения высокого коэффициента использования оборудования при выполнении задач, связанных с глубоким обучением. Singularity удаётся добиться этого с помощью нового планировщика, способного обеспечить высокую загрузку ускорителей (в том числе FPGA и ASIC) без роста числа ошибок или снижения производительности. Singularity предлагает прозрачное выделение и эластичное масштабирование выделяемых каждой задаче вычислительных ресурсов. Фактически она играет роль своего рода «умной» прослойки между собственно аппаратным обеспечением и программной платформой для ИИ-нагрузок. Изображение: Microsoft Singularity позволяет разделять задачи, поручаемые ресурсам ускорителей. Если необходимо масштабирование, система не просто меняет число задействованных устройств, но и управляет распределением и выделением памяти, что крайне важно для ИИ-нагрузок. Правильное планирование позволяет не простаивать без нужды весьма дорогому «железу», благодаря чему и достигается положительный экономический эффект. В докладе также прямо говорится, что у Microsoft есть сотни тысяч GPU и других ИИ-ускорителей. В частности, упоминается, что Singularity используется на платформах NVIDIA DGX-2: два Xeon Platinum 8168 (по 20 ядер каждый), восемь ускорителей V100 с NVSwitch, 692 Гбайт RAM и интерконнект InfiniBand. Таким образом, ИИ-парк компании должен включать десятки тысяч узлов, поэтому эффективное управление им очень важно. |
|


