Материалы по тегу: c

28.05.2021 [00:33], Владимир Мироненко

Perlmutter стал самым мощным ИИ-суперкомпьютером в мире: 6 тыс. NVIDIA A100 и 3,8 Эфлопс

В Национальном вычислительном центре энергетических исследований США (NERSC) Национальной лаборатории им. Лоуренса в Беркли состоялась торжественная церемония, посвящённая официальному запуску суперкомпьютера Perlmutter, также известного как NERSC-9, созданного HPE в партнёрстве с NVIDIA и AMD.

Это самый мощный в мире ИИ-суперкомпьютер, базирующийся на 6159 ускорителях NVIDIA A100 и примерно 1500 процессорах AMD EPYC Milan. Его пиковая производительность в вычислениях смешанной точности составляет 3,8 Эфлопс или почти 60 Пфлопс в FP64-вычислениях.

Perlmutter основан на платформе HPE Cray EX с прямым жидкостным охлаждением и интерконнектом Slingshot. В состав системы входят как GPU-узлы, так и узлы с процессорами. Для хранения данных используется файловая система Lustre объёмом 35 Пбайт скорость обмена данными более 5 Тбайт/с, которая развёрнута на All-Flash СХД HPE ClusterStor E1000 (тоже, к слову, на базе AMD EPYC).

 Perlmutter (Phase 1). Фото: NERSC

Perlmutter (Phase 1). Фото: NERSC

Установка Perlmutter разбита на два этапа. На сегодняшней презентации было объявлено о завершении первого (Phase 1) этапа, который начался в ноябре прошлого года. В его рамках было установлено 1,5 тыс. вычислительных узлов, каждый из которых имеет четыре ускорителя NVIDIA A100, один процессор AMD EPYC Milan и 256 Гбайт памяти. На втором этапе (Phase 2) в конце 2021 года будут добавлены 3 тыс. CPU-узлов c двумя AMD EPYC Milan и 512 Гбайт памяти., а также ещё ещё 20 узлов доступа и четыре узла с большим объёмом памяти.

 NERSC

NERSC

Также на первом этапе были развёрнуты служебные узлы, включая 20 узлов доступа пользователей, на которых можно подготавливать контейнеры с приложениями для последующего запуска на суперкомпьютере и использовать Kubernetes для оркестровки. Среда разработки будет включать NVDIA HPC SDK в дополнение к наборам компиляторов CCE (Cray Compiling Environment), GCC и LLVM для поддержки различных средств параллельного программирования, таких как MPI, OpenMP, CUDA и OpenACC для C, C ++ и Fortran.

 Фото: DESI

Фото: DESI

Сообщается, что для Perlmutter готовится более двух десятков заявок на вычисления в области астрофизики, прогнозирования изменений климата и в других сферах. Одной из задач для новой системы станет создание трёхмерной карты видимой Вселенной на основе данных от DESI (Dark Energy Spectroscopic Instrument). Ещё одно направление, для которого задействуют суперкомпьютер, посвящено материаловедению, изучению атомных взаимодействий, которые могут указать путь к созданию более эффективных батарей и биотоплива.

Постоянный URL: http://servernews.ru/1040628
17.05.2021 [18:26], Сергей Карасёв

Иран запустил Simurgh, свой самый мощный суперкомпьютер

В Иране введён в эксплуатацию самый мощный в стране вычислительный комплекс: система получила название Simurgh — в честь фантастического существа в иранской мифологии, царя всех птиц. Суперкомпьютер разработан специалистами Технологического университета имени Амира Кабира (Amirkabir University of Technology). Смонтирована система в Иранском исследовательском центре высокопроизводительных вычислений (IHPCRC).

В настоящее время быстродействие комплекса составляет 0,56 Пфлопс. В дальнейшем мощность суперкомпьютера планируется довести до 1 Пфлопс — на доработку системы потребуется около двух месяцев. Конфигурация суперкомпьютера не раскрывается, а появление его в публичных рейтингах производительности вряд ли стоит ожидать.

 Суперкомпьютер Simurgh. Фото: Maryam Kamyab / MEHR

Суперкомпьютер Simurgh. Фото: Maryam Kamyab / MEHR

Новый суперкомпьютер, по словам представителей власти, по мощности приблизительно в 100 раз превосходит системы высокопроизводительных вычислений, до сих пор применявшиеся в Иране. Система будет использоваться для задач в области генетики, Big Data, ИИ, интернета вещей и так далее. Часть мощностей будет выделена для облачных систем.

 Суперкомпьютер Simurgh. Фото: Maryam Kamyab / MEHR

Суперкомпьютер Simurgh. Фото: Maryam Kamyab / MEHR

Интернет-источники отмечают, что Simurgh, по всей видимости, построен с использованием комплектующих, приобретённых на «чёрном» рынке, поскольку официально Иран не может закупать многие современные технологии из-за санкций — несколько лет назад ZTE получила крупный штраф из-за нелегальных поставок оборудования в страну. Тем не менее, Ирану периодически удаётся получить необходимые компоненты: в начале века был построен кластер из Pentium III/IV, а в 2007 году был построен суперкомпьютер на базе AMD Opteron.

Постоянный URL: http://servernews.ru/1039769
15.04.2021 [01:31], Владимир Мироненко

TSMC остановит выпуск Arm-процессоров Phytium — судьба китайского экзафлопсного суперкомпьютера Tianhe-3 под вопросом

Тайваньская компания Taiwan Semiconductor Manufacturing Company (TSMC) приостановила поставку чипов по новым заказам китайской компании Phytium, которая на прошлой неделе была добавлена властями США в «чёрный» список Министерства торговли. Внесение компаний в этот перечень означает запрет для американских компаний на работу с ними и предоставление продуктов или услуг без получения соответствующих лицензий.

Иностранные компании, такие как TSMC, теоретически могут продолжать работать с компаниями из «чёрного списка», но США могут оказывать на них давление через их американских поставщиков. Например, когда США занесли Huawei в «чёрный» список, TSMC была вынуждена отказаться от сотрудничества с ней, поскольку многие ключевые технологии, лежащие в основе её производственных процессов, были разработаны американскими фирмами.

Пока неясно, оказывалось ли сейчас подобное давление на TSMC, и были ли ею прекращены поставки остальным шести суперкомпьютерным китайским фирмам из «чёрного» списка. Как сообщает South China Morning Post, TSMC выполнит заказы, размещённые Phytium до внесения в «чёрный список», но больше поставлять ей чипы не будет.

 Прототип Tianhe-3. Фото: Xinhua

Прототип Tianhe-3. Фото: Xinhua

Предполагается, что Phytium стоит за развёртыванием систем высокопроизводительных вычислений для китайского военно-промышленного комплекса, использующего её разработки при создании гиперзвуковых ракет. Компания сотрудничает с Оборонным научно-техническим университетом Народно-освободительной армии Китая (NUDT), который ранее создал суперкомпьютеры Tianhe-1 и Tianhe-2, в своё время занимавшие первые строчки рейтинга TOP500.

Tianhe-3, один из трёх проектов китайских суперкомпьютеров экзафлопсного класса, должен был быть закончен в прошлом году, однако осенью было объявлено, что из-за пандемии коронавируса сроки сдвигаются. Летом 2020 года в распоряжении исследователей уже был прототип новой машины, имевший теоретическую производительность 3,146 Пфлопс. Он включал 512 плат с тремя процессорами Phytium MT2000+ и 128 плат с четырьмя Phytium FT2000+.

Точные параметры этих 7-нм Arm-чипов не приводятся, но в одной из свежих научных публикаций упоминается, что на каждый 64-ядерный FT2000+ в прототипе Tianhe-3 приходилось 64 Гбайт RAM. А каждый MT2000+ можно поделить на четыре NUMA-узла с 32 ядрами и 16 Гбайт RAM, то есть, судя по описанию, это 128-ядерный чип, о котором ранее ничего не было известно. Теперь же судьба этих CPU и суперкомпьютера Tianhe-3 и вовсе под вопросом.

Постоянный URL: http://servernews.ru/1037383
12.04.2021 [19:26], Игорь Осколков

NVIDIA анонсировала серверные Arm-процессоры Grace и будущие суперкомпьютеры на их базе

В рамках GTC’21 NVIDIA анонсировала Arm-процессоры Grace серверного класса, которые станут компаньонами будущих ускорителей компании. Это не означает полный отказ от x86-64, но это позволит компании предложить клиентам более глубоко оптимизированные, а, значит, и более быстрые решения. NVIDIA говорит, что новый CPU позволит на порядок повысить производительность систем на его основе в ИИ и HPC-задачах в сравнении с современными решениями.

Процессор назван в честь Грейс Хоппер (Grace Hopper), одного из пионеров информатики и создательницы целого ряда основополагающих концепций и инструментов программирования. И это имя нам уже встречалось в контексте NVIDIA — в конце 2019 года компания зарегистрировала торговую марку Hopper для MCM-решений.

Компания не готова раскрыть полные технически характеристики новинки, которая станет доступна в начале 2023 года, но приводит некоторые интересные детали. В частности, процессор будет использовать Arm-ядра Neoverse следующего поколения (надо полагать, уже на базе ARMv9), которые позволят получить в SPECrate2017_int_base результат выше 300. Для сравнения — система с парой современных AMD EPYC 7763 в том же бенчмарке показывает результат на уровне 800.

Вторая особенность Grace — использование памяти LPDRR5X (с ECC, естественно). В сравнении с DDR4 она будет иметь вдвое большую пропускную способность (ПСП) и в 10 раз меньшее энергопотребление. Число и скорость каналов памяти не уточняются, но говорится о суммарной ПСП в более чем 500 Гбайт/с на процессор. А у того же EPYC 7763 теоретический пик ПСП чуть больше 200 Гбайт/с. Очевидно, что другие процессоры к моменту выхода NVIDIA Grace тоже увеличат и производительность, и пропускную способность памяти. Гораздо более интересный вопрос, сколько линий PCIe 5.0 они смогут предложить. Если допустить, что у них будет 128 линий, то общая скорость для них составит чуть больше 500 Гбайт/с.

И NVIDIA этого мало — процессоры Grace получат прямое, кеш-когерентное подключение к GPU по NVLInk 4.0 (14x) с суммарной пропускной способностью боле 900 Гбайт/с. GPU тоже, как и прежде, будут общаться напрямую друг с другом по NVLink. Скорость связи между двумя CPU превысит 600 Гбайт/с, а в сборке из четырёх модулей CPU+GPU суммарная скорость обмена данными между системной памятью процессоров и GPU в такой mesh-сети составит 2 Тбайт/с. Но самое интересное тут то, что у памяти CPU (LPDDR5X) и GPU (HBM2e) в такой системе будет единое адресное пространство. Собственно говоря, таким образом компания решает давно назревшую проблему дисбаланса между скоростью обмена данными и доступным объёмом памяти в различных частях вычислительного комплекса.

Для сравнения можно посмотреть на архитектуру нынешних DGX A100 или HGX. У каждого ускорителя A100 есть 40 или 80 Гбайт набортной памяти HBM2e (1555 или 2039 Гбайт/с соответственно) и NVLInk-подключение на 600 Гбайт/c, которое идёт к коммутатору NVSwitch, имеющего суммарную пропускную способность 1,8 Тбайт/с. Всего таких коммутаторов шесть, а объединяют они восемь ускорителей. Внутри этой NVLInk-фабрики сохраняется достаточно высокая скорость обмена данными, но как только мы выходим за её пределы, ситуация меняется.

 Схема NVIDIA DGX A100. Источник: Microway

Схема NVIDIA DGX A100. Источник: Microway

Каждый ускоритель A100 имеет второй интерфейс — PCIe 4.0 x16 (64 Гбайт/с), который уходит к PCIe-коммутатору, каковых в DGX A100 имеется четыре. Коммутаторы, в свою очередь, объединяют между собой сетевые 200GbE-адаптеры (суммарно в дуплексе до 1,6 Тбайт/с для связи с другими DGX A100), NVMe-накопители и CPU. У каждого CPU может быть довольно много памяти (от 512 Гбайт), но её скорость ограничена упомянутыми выше 200 Гбайт/c.

Узким местом во всей этой схеме является как раз PCIe, поэтому переход исключительно на NVLInk позволит NVIDIA получить большой объём памяти при сохранении приемлемой ПСП, не тратясь лишний раз на дорогую локальную HBM2e у каждого GPU. Впрочем, если компания не переведёт на NVLink и собственные будущие DPU Bluefield-3 (400GbE), которые будут скармливать связке CPU+GPU по, например, GPUDirect Storage данные из внешних NVMe-oF хранилищ и объединять узлы DGX POD, то PCIe 5.0 в составе Grace стоит ждать. Это опять-таки упростит и повысит эффективность масштабирования.

В целом, всё это необходимо из-за быстрого роста объёма ИИ-моделей — в GPT-3 уже 175 млрд параметров, а в течение пары лет можно ожидать модели уже с 0,5-1 трлн параметров. Им потребуются не только новые решения для обучения, но и для инференса. То же касается и физических расчётов — модели становятся всё больше и требовательнее + ИИ здесь тоже активно внедряется. Параллельно с разработкой Grace NVIDIA развивает программную экосистему вокруг Arm и своих решений, готовя почву для будущих систем на их основе.

Одной из такой систем станет суперкомпьютер Alps в Швейцарском национальном компьютерном центре (Swiss National Computing Centre, CSCS), который придёт на смену Piz Daint (12 место в нынешнем рейтинге TOP500). Этот суперкомпьютер серии HPE Cray EX, в частности, сможет в семь раз быстрее обучить модель GPT-3, чем машина NVIDIA Selene (5 место в TOP500). Впрочем, на нём будут выполняться и классические HPC-задачи в области метеорологии, физики, химии, биологии, экономики и так далее. Ввод в эксплуатацию намечен на 2023 год. Тогда же в США появится аналогичная машина от HPE в Лос-Аламосской национальной лаборатории (LANL). Она дополнит систему Crossroads, использующую исключительно процессоры Intel Xeon Sapphire Rapids.

Постоянный URL: http://servernews.ru/1037136
21.12.2020 [18:41], Алексей Степин

128-ядерные супепроцессоры Tachyum Prodigy стали на шаг ближе к реальности

Летом уходящего года компания Tachyum объявила о том, что собирается отправить Xeon «на свалку истории». Сделать это должен 128-ядерный процессор нового поколения Prodigy. Хотя массово он пока не производится, компания продолжает активно работать над проектом и совсем недавно объявила начало предзаказов на эмуляторы нового процессора, как программные, так и базирующиеся на ПЛИС. Также она продемонстрировала рабочий UEFI для будущих CPU.

Молодая словацкая компания замахнулась на многое. Её процессор должен получить до 128 ядер, работающих на частоте до 4 ГГц. Чтобы «накормить» его данными, предусмотрен 12-канальный контроллер памяти DDR5. С периферией Prodigy будет общаться посредством 48 линий PCIe 5.0, но также получит и два контроллера Ethernet класса 400G. Характеристики весьма впечатляют.

Разработчики заявляют, что Prodigy найдёт своё место в системах класса Big Data и мощных системах машинного обучения. Если верить Tachyum, производительность разрабатываемого процессора должна достигнуть 16 и 8 Тфлопс на классичесих вычислениях FP32/FP64. В режиме машинного обучения и инференса возможности новой архитектуры выглядят ещё внушительнее, поскольку речь идёт о цифре 262 Тфлопс.

Столь громкие анонсы в истории вычислительной техники часто заканчивались «на бумаге», но Tachyum действительно работает над реализацией Prodigy. Как это обычно бывает, новая процессорная архитектура отрабатывается разработчиками с помощью эмуляции — как чисто программной, так и базирующейся на мощных ПЛИС. Это позволяет понять возможности и особенности поведения архитектуры, пусть и работающей с меньшей производительностью.

В начале декабря Tachyum объявила об открытии предзаказов на ПЛИС-эмулятор Prodigy, позволяющий начать разработку программного обеспечения для будущих систем на базе нового процессора уже сейчас. Поставки должны начаться в первом квартале 2021 года. В середине месяца Tachyum анонсировала и возможность заказа программного эмулятора Prodigy. Главная ценность такого эмулятора — более низкая стоимость в сравнении с вариантом на базе ПЛИС.

Любой процессор неработоспособен без сопутствующего системного программного обеспечения — BIOS или, что сейчас встречается намного чаще, UEFI. В начале месяца Tachyum объявила о том, что передаст OEM и ODM-партнёрам UEFI, разработанное для новой архитектуры. При этом ПО будет поставляться не только в бинарном виде, разработчики получат и исходные коды.

К настоящему времени, таким образом, компания предлагает программные и ПЛИС-эмуляторы нового процессора, и сопутствующее программное обеспечение. К чести Tachym, разработан не только UEFI — имеется и ядро Linux с поддержкой новой архитектуры, набор средств разработки, включая компиляторы (в том числе, для ИИ-задач) и отладчики кода. Успешно продемонстрирована возможность работы на Prodigy бинарного кода, созданного для архитектур x86, ARM и RISC-V.

Первые чипы Prodigy должны появиться уже в следующем году. Если запуск будет успешным, Tachym может сильно изменить привычную картину мира в сфере HPC и ИИ, ведь новая архитектура обещает быть производительнее классических Xeon и EPYC при на порядок более низком энергопотреблении, втрое более низкой стоимостью в пересчёте на MIPS, и вчетверо более низкой стоимостью владения.

Более того, Prodigy угрожает даже ускорителям, обеспечивая сравнимый или более высокий уровень производительности в задачах, где последние традиционно сильны, например, в системах машинного обучения. Остаётся лишь пожелать Tachyum удачи в столь смелом начинании.

Постоянный URL: http://servernews.ru/1028370
20.11.2020 [16:45], Сергей Карасёв

NEC выводит на рынок векторный ускоритель SX-Aurora TSUBASA Vector Engine 2.0

Компания NEC сообщила о том, что с января следующего года заказчикам по всему миру станет доступен акселератор Vector Engine 2.0 серии SX-Aurora TSUBASA, анонсированный ещё летом.

Изделие Type 20B выполнено в виде двухслотовой карты расширения с интерфейсом PCIe. Оно содержит восемь векторных блоков с частотой 1,6 ГГц, обеспечивающих производительность на уровне 2,45 Тфлопс FP64, и 48 Гбайт памяти HBM2 с пропускной способностью приблизительно 1,53 Тбайт/с. При этом энергопотребление находится на уровне 200 Вт. Также есть версия ускорителя Type 20A, которая имеет 10 векторных блоков и производительность 3,07 Тфлопс FP64.

Благодаря векторной архитектуре крупные объёмы данных можно обрабатывать в пределах каждого цикла. Это открывает широкие возможности при решении задач в области искусственного интеллекта, машинного обучения, интенсивных научных вычислений и пр.

Векторный ускоритель Vector Engine 2.0 может использоваться в составе стандартных серверов и рабочих станций с архитектурой х86 от сторонних поставщиков оборудования. Таким образом, заказчики смогут сформировать вычислительную платформу в соответствии со своими требованиями и объёмом финансирования. Данное решение, по словам NEC, ориентировано на предприятия малого и среднего бизнеса, у которых есть потребность в формировании платформы высокопроизводительных вычислений (HPC).

Постоянный URL: http://servernews.ru/1025912
18.11.2020 [00:17], Владимир Мироненко

SC20: РСК представила all-flash СХД Tornado AFS с функцией высокой доступности

Группа компаний РСК, российский разработчик HPC-решений, представила на всемирной виртуальной суперкомпьютерной выставке SC20 целый ряд новых решений.

В частности, было объявлено, что высокоплотные и энергоэффективные вычислительные узлы «РСК Торнадо» будут поддерживать 10-нм серверные процессоры Intel с кодовым наименованием Ice Lake-SP, намеченные к выпуску в начале 2021 года. Как ожидается, новые чипы получат поддержку интерфейса PCI Express 4.0 и памяти Intel Optane DC второго поколения.

Также была представлена интеллектуальная СХД Tornado AFS с поддержкой функции высокой доступности для создания систем хранения с большим объемом данных. Решение отличается высокой надёжностью и доступностью данных благодаря объединению узлов Tornado AFS в функциональные пары, так как в случае выхода из строя одного из узлов работа обеспечивается с помощью второго.

Это обеспечивает надёжное хранение данных объёмом до 2 Пбайт в форм-факторе 2U с помощью 64-х NVMe SSD в форм-факторе E1.L. Также используются процессоры семейства Intel Xeon Scalable 2-го поколения, твердотельные диски Optane SSD и модули энергонезависимой PMem-памяти Optane DC Persistent Memory (DCPMM). В RSC Tornado AFS используется 100 % жидкостное охлаждение в режиме «горячая вода» с показателем эффективности использования электроэнергии PUE на уровне 1,04.

РСК подтвердила заявленную ранее поддержку DAOS в решениях RSC Storage on-Demand и объявила о переходе на обновлённую платформу оркестрации «РСК БазИС» для создания высокопроизводительных составных архитектур хранения данных. Это позволит вместо жёсткого регламентирования конфигурации применять компонуемый подход для управления DAOS. Использование высокопроизводительных адаптеров с поддержкой RDMA, NVMe-накопителей и памяти Optane DCPMM позволит произвести такую дезагрегацию и дальнейшую компоновку «по запросу» без снижения производительности.

Такой подход позволит заметно увеличить допустимый объем системы хранения данных благодаря отмене ограничений по объёму PMem в DAOS. При этом благодаря компонуемости, неиспользуемые в какой-то момент времени диски можно подключить к другому серверу на основе DAOS или Lustre. В дополнение можно разделить серверы с DAOS и серверы c NVMe-дисками на два пула, тем самым максимально устранив ограничения аппаратной архитектуры сервера (нехватку линий шины PCIe, используемой как накопителями, так и сетевыми адаптерами, а также физических ограничений шасси сервера по размещению дополнительных устройств и их охлаждению).

РСК также разработала пользовательский интерфейс для RSC Storage on-Demand, позволяющий быстро создать сложную многоуровневую компонуемую систему хранения «по требованию». Новый интерфейс поддерживает создание параллельных файловых систем Lustre, распределённых объектных систем хранения DAOS и их комбинаций.

Постоянный URL: http://servernews.ru/1025624
16.11.2020 [17:00], Игорь Осколков

SC20: NVIDIA представила ускоритель A100 с 80 Гбайт HBM2e и настольный «суперкомпьютер» DGX STATION

NVIDIA представила новую версию ускорителя A100 с увеличенным вдвое объёмом HBM2e-памяти: 80 Гбайт вместо 40 Гбайт у исходной A100, представленной полгода назад. Вместе с ростом объёма выросла и пропускная способность — с 1,555 Тбайт/с до 2 Тбайт/с.

В остальном характеристики обоих ускорителей совпадают, даже уровень энергопотребления сохранился на уровне 400 Вт. Тем не менее, объём и скорость работы быстрой набортной памяти влияет на производительность ряда приложений, так что им такой апгрейд только на пользу. К тому же MIG-инстансы теперь могут иметь объём до 10 Гбайт. PCIe-варианта ускорителя с удвоенной памятью нет — речь идёт только об SXM3-версии, которая используется в собственных комплексах NVIDIA DGX и HGX-платформах для партнёров.

 NVIDIA A100 80 Гбайт

NVIDIA A100 80 Гбайт

Последним ориентировочно в первом квартале следующего года будут предоставлены наборы для добавления новых A100 в существующие решения, включая варианты плат на 4 и 8 ускорителей. У самой NVIDIA обновлению подверглись, соответственно, DGX A100 POD и SuperPOD for Enterprise. Недавно анонсированные суперкомпьютеры Cambridge-1 и HiPerGator на базе SuperPOD одними из первых получат новые ускорители с 80 Гбайт памяти. Ожидается, что HGX-решения на базе новой A100 будут доступны от партнёров компании — Atos, Dell Technologies, Fujitsu, GIGABYTE, Hewlett Packard Enterprise, Inspur, Lenovo, Quanta и Supermicro — в первой половине 2021 года.

Но, пожалуй, самый интересный анонс касается новой рабочей станции NVIDIA DGX STATION A100, которую как раз и можно назвать настольным «суперкомпьютером». В ней используются четыре SXM3-ускорителя A100 с не требующей обслуживания жидкостной системой охлаждения и полноценным NVLink-подключением. Будут доступны две версии, со 160 или 320 Гбайт памяти с 40- и 80-Гбайт A100 соответственно. Базируется система на 64-ядерном процессоре AMD EPYC, который можно дополнить 512 Гбайт RAM.

Для ОС доступен 1,92-Тбайт NVMe M.2 SSD, а для хранения данных — до 7,68 Тбайт NVMe U.2 SSD. Сетевое подключение представлено двумя 10GbE-портами и выделенным портом управления. Видеовыходов четыре, все mini Display Port. DGX STATION A100 отлично подходит для малых рабочих групп и предприятий. В том числе благодаря тому, что функция MIG позволяет эффективно разделить ресурсы станции между почти тремя десятками пользователей. В продаже она появится у партнёров компании в феврале следующего года.

Вероятно, все выпускаемые сейчас A100 c увеличенным объёмом памяти идут на более важные проекты. Новинкам предстоит конкурировать с первым ускорителем на базе новой архитектуры CDNA — AMD Instinct MI100.

Постоянный URL: http://servernews.ru/1025432
13.11.2020 [18:00], Алексей Степин

Южная Корея близка к созданию собственного процессора для суперкомпьютеров

Мощные многоядерные процессоры, могущие служить основой суперкомпьютерных комплексов и кластерных систем могут разрабатывать, а тем более производить, не так уж много стран. Но любое государство, претендующее на независимость в IT, хорошо понимает, что в современном мире такая возможность может оказаться ключевой. Именно поэтому создан консорциум European Processor Initiative, именно для этого КНР, Япония и Россия разрабатывают свои многоядерные чипы. Теперь в игру вступает и Южная Корея.

Концепция процессора для сферы супервычислений может отличаться кардинально: так, Европа и Япония предпочитают архитектуру ARM, Европа присматривается и к RISC-V, а Россия делает основную ставку на VLIW (семейство «Эльбрус»). Японские процессоры Fujitsu A64FX тоже основаны на ARM, но заметно отличаются от всех остальных чипов: набор инструкций SVE, HBM-память и встроенный интерконнект.

Южнокорейский институт электроники и телекоммуникаций (ETRI), ведущий свой проект совместно с ARM, объявил о том, что стал ещё на шаг ближе к созданию собственного уникального процессора класса HPC. Уникальность южнокорейской разработки в том, что она должна обеспечивать как высокую производительность в традиционных суперкомпьютерных задачах, обычно использующих вычисления двойной точности (FP64), так и невысокий уровень энергопотребления в «низкоточных» задачах (инференс, машинное обучение и тому подобные сценарии).

Спецификации, поставленные перед южнокорейскими разработчиками, довольно серьёзны: финальный вариант процессора должен обеспечивать 2,5-кратное превосходство над классическими ускорителями (обычно на базе графических чипов), но при этом быть на 60% экономичнее них. Это должно достигаться за счёт уникальной реализации управления питанием и тактовыми частотами отдельных компонентов процессора. Речь идёт как об аппаратной составляющей, так и о разработке собственного программного стека, позволяющего тонко манипулировать режимами работы нового ЦП.

Заявлена возможность интеграции собственных блоков ускорителей, совместимых с уже существующими фреймворками за счёт поддержки OpenMP и OpenCL. Процессор в полной мере сохранит классический режим вычислений с двойной точностью. Текущий прототип получил название K-AB21, причём AB означает «Artificial Brain» (искусственный мозг) — разработчики заявляют, что за счет активного использования матричных ядер (XPU) им удалось достичь производительности 16 Тфлопс на процессор. Это обещает до 1600 Тфлопс на стойку. Процессор с такой производительностью должен открыть Южной Корее дорогу к собственным суперкомпьютерам экзафлопсного класса.

Компоновкой K-AB21 отчасти напоминает Fujitsu A64FX, поскольку также предусматривает наличие пула HBM2 в виде четырёх сборок, однако это не единственная его память. HBM выступает скорее в роли ещё одного уровня кеша, а основной объём составляют модули DDR5. Вычислительная часть состоит из классических ARM-ядер Zeus и многопоточных масштабируемых ядер XPU собственной разработки ETRI. Их-то разработчики и называют «матричными ядрами», поскольку работа с матричной математикой главная задача этих ядер.

Группы таких ядер, называемые доменами XEMC на схеме (всего их в каждом процессоре 4), имеют свой MMU, а также собственные подсистемы кешей и программируемых блоков логики с поддержкой SMT. За соединение частей процессора между собой отвечает внутренняя сеть с ячеистой (mesh) топологией. Текущая реализация K-AB21 также включает в себя шесть контроллеров шины PCI Express 5.0, каждый на 16 линий.

В настоящее время разработчики заняты финализацией отдельных элементов дизайна K-AB21, но в целом разработка близка к завершению. Полноценная реализация «в кремнии» ожидается к концу 2021 года, что для проекта такого масштаба достаточно быстро и позволит Южной Корее вовремя войти в эру суперкомпьютеров экза-класса.

В настоящее время самым мощным южнокорейским кластером является Nurion, занимающий 17 место в Top500. Однако это система Cray CS500 на базе Intel Xeon Phi 7250, которая целиком базируется на технологиях США, а выпуск собственного HPC-процессора позволит Южной Корее стать более независимой в этом аспекте.

Постоянный URL: http://servernews.ru/1025344
16.10.2020 [23:17], Юрий Поздеев

DPU в стиле Intel: сетевые адаптеры с Xeon D, FPGA, HBM и SSD

Мир сетевых карт становится умнее. Это следующий шаг в дезагрегации ресурсов центров обработки данных. Наличие расширенных возможностей сетевых карт позволяет разгрузить центральный процессор, при этом специализированные сетевые адаптеры обеспечивают более совершенные функции и безопасность. В этой новости мы познакомим вас сразу с двумя адаптерами: Silicom SmartNIC N5010 и Inventec SmartNIC C5020X.

Silicom FPGA SmartNIC N5010 предназначена для систем крупных коммуникационных провайдеров. Операторы все чаще стремятся заменить проприетарные форм-факторы от поставщиков телекоммуникационного оборудования на более стандартные варианты. В рамках этого мы видим, что производители ПЛИС не прочи освоить и эту нишу.

В Silicom FPGA SmartNIC N5010 используется Intel Stratix 10 DX с 8 Гбайт памяти HBM. Поскольку пропускная способность памяти становится все большим аспектом производительности системы, HBM будет продолжать распространяться за пределы графических процессоров и FPGA. В SmartNIC и DPU память HBM может использоваться для размещения индексных таблиц поиска и других функций для интенсивных сетевых нагрузок. Помимо HBM SmartNIC N5010 имеет еще 32 Гбайт памяти DDR4 ECC. SmartNIC N5010 потребляет до 225 Вт, что предполагает несколько вариантов исполнения карты, в том числе и с активным охлаждением.

Самая интересная особенность новой карты — 4 сетевых порта по 100 Гбит/с. На плате SmartNIC N5010 установлены две базовые сетевые карты Intel E810 (Columbiaville). На приведенной схеме можно заметить, что используется интерфейс PCIe Gen4 x16, причем их тут сразу два. Для работы четырех 100GbE-портов уже недостаточно одного интерфейса PCIe 4.0 x16. Второй порт PCIe 4.0 x16 может быть подключен через дополнительный кабель к линиям второго процессора, чтобы избежать межпроцессорного взаимодействия для передачи данных.

Вторая новинка, Inventec FPGA SmartNIC C5020X, совмещает на одной плате процессор Intel Xeon D и FPGA Intel Stratix 10. Этот адаптер предназначен для разгрузки центрального процессора в серверах крупных облачных провайдеров. На плате установлен процессор Intel Xeon D-1612 с 32-Гбайт SSD и 16 Гбайт DDR4, подключение к ПЛИС Intel Stratix 10 DX 1100 осуществляется через PCIe 3.0 x8. Нужно отметить, что FPGA Stratix имеет свои собственные 16 Гбайт памяти DDR4, а также обеспечивает сетевые подключения 25/50 Гбит/с и оснащен интерфейсом PCIe 4.0 x8, через который адаптер подключается к хосту.

У Inventec уже есть решение на базе Arm (Inventec X250), которое использует ПЛИС Arria 10 GX660 вместе с сетевым адаптером Broadcom Stingray BCM8804, которое имеет аналогичный форм-фактор и TPD не более 75 Вт. Однако для некоторых организаций наличие единой x86 платформы, включая SmartNIC, упрощает развертывание, поэтому вариант C5020X для таких компаний более предпочтителен.

Решение получилось очень интересным, однако вряд ли его можно назвать адаптером для массового рынка, как Intel Columbiaville. На примере этого адаптера Intel показала, что может объединить элементы своего портфеля для создания комплексных решений. Inventec FPGA SmartNIC C5020X является хорошей альтернативой предложению на базе Broadcom, что позволит крупным облачным провайдерам диверсифицировать свои платформы.

Несмотря на то, что обе новинки классифицируются как «умные» сетевые адаптеры SmartNIC, вторая, пожалуй, уже ближе к DPU, если сравнивать её с адаптерами NVIDIA DPU, в которых сетевая часть дополнена Arm-процессором и GPU-ускорителем. В данном случае есть и x86-ядра общего назначения, и ускоритель, хотя и на базе ПЛИС. Впрочем, устоявшегося определения DPU и списка критериев соответствия этому классу процессоров пока нет.

Постоянный URL: http://servernews.ru/1023157