Материалы по тегу: cpu
28.06.2023 [17:22], Алексей Степин
Появились первые фото Intel Xeon Granite Rapids для огромного сокета LGA 7529В 2024 году на смену платформам Sapphire Rapids и Emerald Rapids корпорация Intel планирует выпустить чипы Granite Rapids на базе производительных Р-ядер. Эти процессоры будут производиться с использованием техпроцесса Intel 3 и будут поистине огромными в смысле физических размеров — на днях энтузиасту с ником YuuKi_AnS удалось получить первые фотографии Granite Rapids. Тенденция к укрупнению процессорных разъёмов не нова: эта гонка стартовала аккурат в момент переезда контроллера памяти, а затем и шины PCI Express из чипсета в сам процессор, и постепенно наращивание возможностей обеих интерфейсов сделало своё дело. Но снимки, опубликованные YuuKi_AnS, впечатляют даже на фоне AMD SP5 для платформы Genoa. Неудивительно, новый разъём превосходит SP5 даже по количеству контактов — 7529 против 6096. Процессоры Granite Rapids получат 12 каналов DDR5-5600, 96 линий PCIe 5.0 и поддержку CXL 2.0. По размерам новые процессоры приблизительно в 1,7 раза больше Sapphire Rapids, ожидается, что размеры LGA-7529 составят 105 × 70 мм, что действительно больше, чем у AMD SP5, где аналогичные размеры составляют 75 × 72 мм; для сравнения, LGA-4189 (Ice Lake-SP) имеет габариты 77,6 × 56,6 мм. Технически процессоры будут состоять из двух кристаллов с архитектурой Redwood Cove, включающей в себя только Р-ядра. Компания Intel планирует минимум три варианты охлаждения, рассчитанных на 400–500 Вт. Более подробно о Granite Rapids «синие» расскажут на мероприятии Intel Innovation, запланированном на сентябрь этого года.
19.05.2023 [10:10], Сергей Карасёв
Ampere представила процессоры AmpereOne: до 192 ядер Arm, 8 каналов DDR5 и 128 линий PCIe 5.0Компания Ampere анонсировала процессоры серии AmpereOne, предназначенные для использования в серверах и оборудовании для дата-центров. Утверждается, что по сравнению с изделиями предыдущих поколений — Ampere Altra и Ampere Altra Max — новые чипы обеспечивают более высокие показатели производительности и энергоэффективности, а также обладают улучшенной масштабируемостью. Процессоры AmpereOne основаны на кастомизированных ядрах собственной разработки Ampere с набором инструкций Arm. Задействована чиплетная компоновка. Изготавливаются решения на предприятии TSMC на основе комбинации технологий с нормами 5 и 7 нм. ![]() Источник изображений: Ampere В семейство AmpereOne вошли пять моделей — со 136, 144, 160, 172 и 192 ядрами. Каждое ядро способно обрабатывать один поток инструкций. Объём кеша L2 составляет 2 Мбайт в расчёте на ядро; размер кеша L1 — 16 Кбайт для инструкций и 64 Кбайт для данных. Кроме того, есть 64 Мбайт системного кеша. Тактовая частота достигает 3,0 ГГц. Конструкция AmpereOne включает восемь каналов памяти DDR5 с поддержкой ECC: сервер может быть оборудован 16 слотами DIMM с возможностью использования до 8 Тбайт ОЗУ. Доступны 128 линий PCIe 5.0. Упомянута поддержка Armv8.6+ и SBSA 5. Чипы имеют исполнение FCLGA (5964-Pin). Ampere отмечает, что процессоры AmpereOne ориентированы прежде всего на облачные платформы и среды виртуализации. Они обеспечивают высокую плотность вычислений и возможность формирования виртуальных машин, использующих от одного vCPU. Кроме того, достигается высокая производительность при ИИ-нагрузках (BF16). Заявленное энергопотребление AmpereOne составляет 1,8 Вт в расчёте на ядро, или от 200 до 350 Вт на сокет в зависимости от модификации решения.
16.05.2023 [09:23], Сергей Карасёв
Индия представила свой первый серверный процессор AUM: 96 ядер и 96 Гбайт памяти HBM3Центр развития передовых вычислений (C-DAC) Департамента электроники и информационных технологий Министерства коммуникаций и информационных технологий Индии представил первый в стране процессор для серверов и НРС-систем. Изделие под названием AUM выйдет на коммерческий рынок в текущем или следующем году. Решение имеет чиплетную компоновку на базе двух модулей A48Z, каждый из которых насчитывает 48 вычислительных ядер Zeus с архитектурой Arm. Таким образом, суммарное количество ядер достигает 96. Тактовая частота составляет 3,0 ГГц (до 3,5 ГГц в турбо-режиме); показатель TDP варьируется от 280 до 320 Вт. Новинка будет изготавливаться на предприятии TSMC по 5-нм технологии. Чип содержит 96 Мбайт кеша L2 и 96 Мбайт системного кеша. Изделие получило 96 Гбайт памяти HBM3 и 8-канальный контроллер DDR5-5200; кроме того, имеется доступ к 64 Гбайт памяти HBM3-5600. Таким образом, задействована трёхуровневая подсистема памяти. Упомянуты до 128 линий PCIe 5.0 с поддержкой CXL. Процессор AUM может применяться в двухсокетных серверах. Заявленная производительность превышает 4,6 Тфлопс в расчёте на разъём. Реализованы различные средства обеспечения безопасности, в том числе функция Secure Boot и криптографические алгоритмы.
22.03.2023 [00:09], Алексей Степин
NVIDIA показала сдвоенный серверный суперпроцессор Grace SuperchipПроект NVIDIA Grace весьма амбициозен: компания всерьёз намерена ворваться с его помощью на рынок высокопроизводительных серверных процессоров, где всё ещё доминируют решения Intel и AMD. Об этом чипе было объявлено ещё на конференции GTC 2022, а на GTC 2023 глава компании, наконец, показал его вживую. В рамках продолжающегося роста плотности упаковки вычислительных мощностей в современных ЦОД на первый план выдвинулась не голая производительность, а соотношение производительности к уровню энергопотребления и тепловыделения. По сочетанию этих параметров x86 далеко не оптимальна, и тут у NVIDIA есть все шансы. С анонсом Grace Superchip NVIDIA провозглашает (впрочем, уже не в первый раз) смерть «закона Мура» — пришло время оптимизации и отказа от устаревших, по мнению компании, вычислительных архитектур. Процессор NVIDIA Grace воплощает в себе все современные тенденции, начиная с отказа от монолитного кристалла. Сборка Grace Superchip состоит из двух кристаллов, каждый из которых включает в себя 72 ядра Arm Neoverse V2 (Arm v9), поддерживающих векторные расширения SVE2 и оптимизированные для ИИ форматы BF16/INT8. Кристаллы соединены между собой шиной NVLink-C2C, обеспечивающей пропускную способность 900 Гбайт/с. В сборку интегрированы чипы памяти LPDDR5x общим объёмом до 960 Гбайт, причём каждый кристалл имеет свою шину доступа к памяти с производительностью 500 Гбайт/с. При этом с точки зрения ПО Grace Superchip представляется единым 144-ядерным процессором с ПСП на уровне 1 Тбайт/с. Для достижения схожих параметров в мире x86 требуется двухпроцессорная платформа AMD Genoa, куда более сложная технически и гораздо менее энергоэффективная, но при этом обладающая всеми недостатками NUMA-систем. Достаточно сравнить энергопотребление: 900 Вт против 500 у нового решения NVIDIA. NVIDIA есть чем гордиться: при сопоставимом уровне энергопотребления Grace Superchip превосходит своих конкурентов из мира x86 в 2,3 раза при запуске микросервисов, вдвое опережает их в приложениях с интенсивным обменом данными с памятью и почти вдвое — в задачах симуляции вычислительной гидродинамики. В ряде других научно-технических задач преимущество может быть и более чем двукратным. Это достигнуто в том числе благодаря изначальной оптимизации дизайна процессора с упором на максимальную производительность передачи данных. Внутренне Grace организован по принципу меш-сети с распределённой системой кеширования на базе специальных узлов коммутации CSN (Cache Switch Nodes). Называется эта сеть Scalable Coherency Fabric, она имеет пропускную способность 3,2 Тбайт/с, а объём кеша L3 составляет 117 Мбайт на кристалл и 234 Мбайт совокупно. Сервер на базе NVIDIA Grace не только может потреблять меньше энергии, но и будет существенно проще конструктивно, поскольку модуль Grace Superchip содержит не только процессорные ядра и память, но также и регуляторы напряжения. От платформы на базе нового процессора требуется только PCIe 5.0 — у нового чипа есть два набора по 64 линии. Причём линии с поддержкой CXL 2.0, так что проблем с расширением доступного объёма памяти новинка испытывать не будет. Даже компактные серверы высотой 1U смогут вместить две сборки Grace Superchip, что даст 288 ядер и почти 2 Тбайт оперативной памяти — труднодостижимый в таких габаритах показтель для более традиционных конструктивов процессоров и системных плат. Сравнительно невысокий теплопакет позволит таким решениям обходиться традиционным воздушным охлаждением. При этом есть и вариант Grace Hopper, сочетающий в одном модуле кристалл Grace и новейший GPU H100, причём параметрами PCI Express последний ограничен не будет благодаря NVLink-C2C. NVIDIA уже начала первичные поставки Grace, а начало полномасштабного производства ожидается во второй половине года. Новыми процессорами заинтересовались крупные производители оборудования, включая ASUS, Atos, GIGABYTE, HPE, QCT, Supermicro, Wistron и ZT Systems. Лос-Аламосская национальная лаборатория объявила, что использует NVIDIA Grace в новом суперкомпьютере Venado, который поможет учёным в исследованиях новых материалов и возобновляемых источников энергии. Ряд крупных европейских и азиатских ЦОД также рассматривает перспективы применения новых процессоров NVIDIA. В частности, одной из систем на базе Grace станет кластер Alps в Швейцарском национальном компьютерном центре.
28.02.2023 [00:08], Игорь Осколков
Xeon EE для 5G: Intel представила процессоры Sapphire Rapids со встроенным ускорителем vRAN BoostНа MWC 2023 компания Intel, как и обещала когда-то, представила специализированное решение для ускорения внедрения 5G и 4G, которое упрощает развёртывание виртуализированных сетей радиодоступа (vRAN) — процессоры Xeon Sapphire Rapids с интегрированным ускорителем vRAN Boost. Новинки, по словам компании, оптимизированы для сигнальной обработки и обработки пакетов, балансировки, ИИ и машинного обучения, а также динамического управления энергопотреблением. Новинки позволят телеком-провайдерами консолидировать уже развёрнутые сети 4G/5G, удвоив ёмкость vRAN (по сравнению с Ice Lake-SP), а также вдвое улучшить энергоэффективность обработки L1-трафика в режиме реального времени благодаря расширенным возможностям сбора телеметрии и управления состоянием отдельных ядер (переход в сон и обратно) с низким уровнем задержки, а также гибкого перераспределения сетевых и иных нагрузок между ядрами. Компания предложит заказчикам две серии Xeon EE (Enhanced Edge) с числом ядер до 20 или до 36 шт. и восемью каналами памяти, DDR5-4000 и DDR5-4400 соответственно. В обоих случаях речь об односокетных платформах. Некоторые модели также имеют поддержку AMX-инструкций и расширенный диапазон рабочих температур. Компанию новинкам составят FPGA Agilex 7, eASIC N5X и сетевые контроллеры E810 (Columbiaville). Xeon EE используют расширения AVX (в частности, AVX512-FP16) для обработки сигналов и аппаратные блоки ускорения vRAN Boost для прямой коррекции ошибок (FEC, Forward Error Correction) и дискретного преобразования Фурье (DFT, Discrete Fourier Transformation), что позволяет снизить энергопотребление на величину до 20 % по сравнению с обычными Sapphire Rapids, поскольку для них и более ранних CPU требуются дискретные ускорители вроде ACC100. Для работы с новыми функциями предлагается DPDK и VPP, а драйверы совместимы с O-RAN ALLIANCE Accelerator Abstraction Layer (AAL) API. Также поддерживается и референсная платформа Intel FlexRAN. В целом же, Intel продолжает продвигать идею замены специализированного 4G/5G-оборудования на как можно более стандартные серверы, что приводит к снижению совокупной стоимости владения (TCO) и повышает функциональность, гибкость и масштабируемость сетей нового поколения благодаря переходу к программно определяемым решениям. Среди ключевых партнёров компания называет Advantech, Capgemini, Canonical, Dell Technologies, Ericsson, HPE, Mavenir, Quanta Cloud Technology, Rakuten Mobile, Red Hat, SuperMicro, Telefonica, Verizon, VMware, Vodafone и Wind River. На MWC 2023 также были показаны анонсированные на днях edge-серверы Dell на базе новых Xeon EE. Кроме того, Intel при сотрудничестве с SK Telecom разработала референсную программную платформу Intel Infrastructure Power Manager для ядра 5G-сети, которая позволяет ещё больше снизить (до -30 %) фактическое энергопотребление процессоров. Наконец, компания на пару с Samsung продемонстрировала работу 5G UPF (User Plane Function) на скорости 1 Тбит/с, для чего оказалось достаточно двухсокетного сервера с Sapphire Rapids, который, судя по всему, всё же был снабжён ускорителями.
20.01.2023 [15:28], Алексей Степин
NVIDIA Grace Superchip получит 144 Arm-ядра, 960 Гбайт набортной памяти LPDDR5x и 128 линий PCIe 5.0, а TDP составит 500 ВтGrace можно назвать одним из самых амбициозных проектов NVIDIA. О намерении ворваться на рынок мощных серверных процессоров компания объявила ещё на GTC 2022, но до недавних пор о чипах Grace были доступны лишь общие сведения. Однако ситуация меняется. NVIDIA явно располагает рабочим «кремнием», и на днях опубликовала пару деталей о Grace Superchip. Ожидается, что официальный анонс новинки состоится в марте этого года на GTC 2023. Эта сборка включает в себя два 72-ядерных кристалла Grace, использующих ядра Arm Neoverse V2. Данное ядро использует набор инструкций Armv9, а также имеет четыре 128-битных блока векторных расширений SVE2, блоки для работы с матрицами и поддержку BF16/INT8. Объём кеша L1 составляет по 64 Кбайт для инструкций и данных, L2 — 1 Мбайт на ядро, а общий объём L3 на сборку достигает 234 Мбайт. ![]() Блок-схема сборки Grace Superchip. Источник изображений здесь и далее: NVIDIA Между собой кристаллы соединены шиной NVLink C2C с пропускной способность 900 Гбайт/с, и работают они как единый 144-ядерный процессор. Но это ещё не всё: каждый из кристаллов соединен со своим банком памяти LPDDR5x ECC шиной с пропускной способностью 500 Гбайт/с (т.е. суммарно на чип получается 1 Тбайт/с). Совокупный объём памяти может достигать 960 Гбайт. ![]() Сравнение производительности и энергоэффективности Grace Superchip с двумя AMD EPYC 7763 (Milan) Сборка Grace Superchip общается с внешним миром посредством восьми комплексов PCIe 5.0 x16 (всего 128 линий, поддерживается бифуркация). Чип при теплопакете 500 Вт (вместе с набортной памятью) способен развивать 7,1 Тфлопс на вычислениях двойной точности. С учетом интегрированной памяти это делает Grace Superchip интересной альтернативой AMD Genoa. Помимо данных о производительности в режиме FP64 компания уже опубликовала результаты тестов новинки в HPC-нагрузках, где сравнила своё детище с двухсокетной системой на базе AMD EPYC 7763. Выигрыш в производительности составляет от 1,5x до 2,5x, но что не менее важно — Grace Superchip намного эффективнее энергетически, здесь преимущество может достигать 3,5x. В условиях высокоплотных ЦОД или HPC-кластеров это может стать решающим.
11.01.2023 [03:00], Игорь Осколков
Асимметричный ответ: Intel официально представила процессоры Xeon Sapphire RapidsIntel официально представила серверные процессоры Xeon семейства Sapphire Rapids (SPR), выход которых изрядно задержался, а также ускорители ранее известные как Ponte Vecchio и теперь объединённые вместе с HBM-версиями SPR в отдельную HPC-серию Max. В этом поколении Intel не смогла догнать AMD EPYC Genoa по числу ядер, числу каналов памяти и линий PCIe, но заготовила ассиметричный, хотя и очень странно реализованный ответ. Всего представлено 52 модели с числом P-ядер от 8 до 60 и с TDP от 125 до 350 Вт. По числу ядер это существенный апгрейд по сравнению с Ice Lake-SP (до 40 ядер), да и IPC вырос у Golden Cove на 15 % в сравнении с Sunny Cove. Но это существенный проигрыш в сравнении с Genoa (до 96 ядер), особенно если учитывать их максимальный TDP в 360 Вт (cTDP до 400 Вт). Правда, у Sapphire Rapids есть ещё и экономичный режим работы, в котором энергопотребление снижается на 20 %, а производительность для некоторых нагрузок — всего на 5 %. Sapphire Rapids предлагают 8 каналов памяти DDR5-4800 (1DPC) и DDR5-4400 (2DPC). 2DPC у Genoa пока что нет. Кроме того, контроллеры поддерживают и модули Optane PMem 300 (Crow Pass), но с учётом того, что производство 3D XPoint прекращено, достаться они могут не всем (впрочем, не всем они и нужны). Ну а маленькая серия Max также включает 64 Гбайт набортной HBM2e-памяти (1,2 Тбайт/с). Остались и отличия в максимальном объёме SGX-анклавов в зависимости от модели CPU. Однако по числу ядер на узел всё равно лидирует Intel. Если AMD поддерживает только 2S-конфигурации, то Intel снова предлагает и 4S, и 8S (а с момента выхода Cooper Lake-SP прошло немало времени) — на процессор доступно до 4 линий UPI 2.0 (16 ГТ/с в сравнении с 11,2 ГТ/с у Ice Lake-SP). В 2S-платформах Sapphire Rapids также формально обгоняет Genoa по числу линий PCIe 5.0, которых тут по 80 шт. на сокет. Формально потому, что в случае Genoa при желании всё же можно получить 160 линий, пожертвовав скоростью шины между CPU, но в односокетном варианте EPYC в любом случае интереснее Xeon. Без нюансов тут не обошлось. Так, при бифуркации до 8 x2 скорость падает до PCIe 4.0. Зато каждый root-комплекс поддерживает CXL 1.1, тогда как у Genoa CXL есть только у половины! Впрочем, поддержка всё равно ограничена 4x CXL-устройствами на CPU. Что ещё более странно, официально заявлена поддержка только устройств Type 1 и Type 2, но не Type 3, хотя последние весьма пригодились бы в ряде конфигураций, где требуется больше относительно недорогой, пусть и несколько более медленной, RAM. Сохранилось традиционное разделение на серии Platinum (8000), Gold (6000/5000), Silver (4000) и Bronze (3000), к которым теперь добавилась серия Max (9400). Список суффиксов, означающих оптимизацию под те или иные задачи и наличие каких-то особенностей, стал чуть шире: Y (SST-PP 2.0), Q (рассчитаны на работу с СЖО), U (односокетные общего назначения), T (увеличенный жизненный цикл), H (in-memory СУБД, аналитика, виртуализация), N (сетевые решения, в том числе для 5G), облачные P/V/M (IaaS/Paa/медиа), S (СХД и HCI). Но некоторые модели также имеют в названии «+». И вот тут начинается самое интересное! Все процессоры получили «традиционную» (в сравнении с Genoa) реализацию AVX-512, включая DL Boost, а также целый новый набор ИИ-инструкций AMX (до 10 раз быстрее обучение и инференс в сравнении с Ice Lake-SP). Есть и всяческие Speed Select, DDIO, TDX, CET и т.д. Но Sapphire Rapids также получили четыре отдельных ускорителя:
Intel заявляет, что средний прирост производительности Sapphire Rapids в сравнении с Ice Lake-SP составил 1,53 раза. А вот для ряда нагрузок, которые могут задействовать новые ускорители прирост производительности на Вт составляет уже до 2,9 раз! То есть Intel продолжает придерживаться стратегии создания максимально универсальных CPU для различных нагрузок. И действительно, спорить с гибкостью Sapphire Rapids трудно. Но какой ценой это достигается? Т.е. буквально: во сколько это обойдётся заказчику? Ответа пока нет. Дело в том, что в зависимости от модели отличается число доступных и число активированных ускорителей. Фактически в новом поколении используется два вида кристаллов: XCC, «сшитые» из четырёх отдельных тайлов, и монолитные MCC (до 32 ядер, причём 32-ядерных моделей в серии большинство). У каждого тайла в XCC есть по одному блоку QAT, DSA, DLB и IAA, т.е. суммарно на CPU приходится до четырёх ускорителей каждого типа. В случае MCC может быть по два QAT и DLB и по одному DSA и IAA на процессор. Например, у тех моделей, что помечены «+», активно по одному блоку каждого типа, а минимум один DSA активен есть вообще у всех CPU. За не активированные по умолчанию ускорители придётся заплатить в рамках программы Intel On Demand (SDSi), причём есть опции как с единовременным платежом за постоянную активацию, так и с оплатой по факту использования (это удобно в случае облаков и платформ по типу HPE Greenlake). Исключением являются H-модели, куда входит и самый дорогой ($17000) 60-ядерный процессор 8490H с полностью разблокированными ускорителями и поддержкой 8S-конфигураций, а также процессоры Max, которым доступно только четыре DSA-блока и 2S-платформы, например, 56-ядерный 9480 ($12980). С одной стороны, желание Intel предоставить больше гибкости заказчикам, а заодно чуть увеличить выход годных к продаже процессоров, понятно. С другой — не очень-то и похоже, что CPU без «лишних» ускорителей отдаются с какой-то существенной скидкой. При этом транзисторный бюджет на них всё равно расходуется. Кроме того, есть ещё момент востребованности этих ускорителей и готовности ПО. У Intel есть и опыт ресурсы для помощи разработчикам, но процесс адаптации в любом случае не мгновенен. Впрочем, у Intel по сравнению с AMD есть и ещё одно важное преимущество — в среднем более высокая доступность процессоров для большинства заказчиков. Так что с Sapphire Rapids может повториться та же история, что с Ice Lake-SP, когда вендоры здесь и сейчас готовы были предложить Intel-платформы. В целом же, в новом семействе наиболее любопытны Xeon Max, которые, по словам Intel, по сравнению с прошлым поколением в 3,7 раз производительнее в задачах, завязанных на пропускную способность памяти (а это целый пласт HPC-нагрузок), и которые не так уж дороги. Правда, и здесь без приключений не обошлось — несчастный суперкомпьютер Aurora ожидает утомительный апгрейд его 10 тыс. узлов c простых Xeon Sapphire Rapids на Xeon Max — по полчаса на каждый узел.
13.12.2022 [21:52], Алексей Степин
Ventana анонсировала первый по-настоящему серверный RISC-V процессор Veyron V1: 192 ядра с частотой 3,6 ГГцАрхитектура RISC-V достаточно молода и обычно ассоциируется с экономичными чипами на платах, подобных Raspberry Pi. Однако технически она позволяет создавать и мощные процессоры, способные поспорить с лучшими решениями на базе архитектур Arm и x86. На саммите RISC-V компания Ventana Micro Systems анонсировала целое семейство высокопроизводительных процессоров, первенцем в котором стал чип Veyron V1, который, по словам разработчиков, сможет потягаться в однопоточной производительности с самыми современными CPU класса High-End. Новинка нацелена на рынок гиперскейлеров, причём благодаря чиплетному дизайну новый процессор изначально разрабатывался как кастомизируемый под задачи заказчика. Veyron V1 будет предлагаться в виде своеобразного набора-конструктора, включающего в себя один или несколько вычислительных чиплетов Veyron, I/O-хаба и интерконнекта, позволяющего связать все компоненты воедино. Это, по словам разработчиков, должно серьёзно ускорить и удешевить процесс внедрения новой процессорной платформы, снизив расходы на разработку чипов на 75 %, а время создания — до не более чем двух лет. ![]() Платформа Veyron V1 универсальна и покрывает широкий спектр задач. Источник здесь и далее: StorageReview Вычислительный чиплет Veyron V1 использует продвинутые 64-битные ядра RISC-V и располагает 2 Мбайт кеша L2, а также многопоточным контроллером памяти. Предусмотрены конфигурации чиплета с 6, 8, 12 или 16 ядрами с частотой в районе 3 ГГц, что сопоставимо с решениями Google и AWS. Использоваться процессор может не только в ЦОД, но и в различных встраиваемых системах, базовых станциях 5G или даже клиентских рабочих станциях. ![]() Чиплетная архитектура ускорит цикл разработки и внедрения, а также упростит задачу подключения кастомных ускорителей Архитектурно дизайн Veyron V1 использует агрессивный конвейер шириной восемь инструкций и с внеочередным исполнением. Чип способен работать на частоте до 3,6 ГГц благодаря использованию 5 нм техпроцесса TSMC. I/O-хаб может производиться с использованием более дешёвых 12 или даже 16-нм техпроцессов. Для соединения компонентов процессора разработан специальный низколатентный интерконнект D2D. Каждый чиплет включает в себя до 16 ядер, предусмотрена возможность масштабирования процессора до 192 ядер в 12 чиплетах. Общий объём разделяемого кеша L3 составляет 48 Мбайт. Заявлен высокий уровень защищённости архитектуры от атак по сторонним каналам. Разработчики заявляют о беспрецедентно низком энергопотреблении: 128 ядер V1 уложатся в 280 Вт; AMD EPYC 7763 потребляет столько же при вдвое меньшем числе ядер. Анонс Ventana нельзя назвать «бумажным» — компания говорит о доступности комплектов разработчика, причём сразу в двух типах шасси: в настольном и в серверном корпусе высотой 2U. Конфигурация включает в себя 16-ядерную версию V1, 128 гбайт памяти DDR5, подключенной с помощью интерфейса CXL (PCIe 5.0) x16, два свободных слота расширения PCIe 5.0 x16, загрузочный накопитель NVMe M.2 и 8 NVMe SFF SSD формата 2,5" для хранения данных. Для удалённого управления предусмотрен 1GbE-порт. Компания не забыла и о поддержке со стороны программного обеспечения: платформы разработчика Ventana Veyron V1 будут сопровождаться полноценным SDK с основным ПО, уже портированным на новую архитектуру. В список входят компиляторы GCC и LLVM, отладчик OpenOCD/GDB, исходные коды и бинарные файлы загрузчиков U-Boot и Tianocore UEFI EDK2.1. Поддерживается ряд дистрибутивов Linux, а также другое системное и прикладное ПО. Ожидается, что новые системы будут доступны в начале следующего года.
29.11.2022 [17:12], Алексей Степин
AWS представила Arm-процессор Graviton3E, оптимизированный для задач ИИ и HPCОдин из крупнейших облачных провайдеров, компания Amazon Web Services объявила о доступности новых инстансов EC2 на базе процессора Graviton3E. Новый чип — наследник анонсированного в конце 2021 года Graviton3, 5-нм 64-ядерного процессора на дизайне Arm Neoverse V1 (Zeus) с поддержкой DDR5 и PCI Express 5.0. Graviton3 использует набор команд Armv8.4 c расширениями Neon (4×128 бит) и SVE (2×256 бит) и поддерживает работу с популярными в сфере машинного обучения форматами данных INT8 и BF16. В сравнении c Graviton2 процессор быстрее на 25-60 % при сохранении аналогичного уровня тепловыделения. Дизайн серверов AWS предусматривает наличие трёх процессоров на узел высотой 1U. ![]() Изображения: AWS Новый процессор Graviton3E представляет собой дальнейшее развитие Graviton3. Чип оптимизирован с учётом потребностей рынка высокопроизводительных вычислений и основное внимание в его архитектуре уделено повышению производительности на операциях с плавающей запятой и вычислениях с использованием векторной математики. AWS, к сожалению, пока не раскрывает деталей относительно архитектуры Graviton3E, но прирост производительности на векторных операциях относительно обычного Graviton3 может достигать 35 %. Помимо классического теста HPL новый процессор хорошо проявляет себя в тестах, имитирующих медико-биологические и финансовые задачи. ![]() Сценарии нагрузок, характерные для HPC, как правило, активно оперируют перемещением крупных объемов данных. Чтобы оптимизировать этот процесс, в новых инстансах AWS использует сеть на базе Elastic Fabric с новыми адаптерами Elastic Network Adapter (ENA). Такая сеть оперирует т. н. Scalable Reliable Datagram (SRD) вместо всем привычных TCP-пакетов. SRD позволяет организовать повторную отправку пакетов за микросекунды вместо миллисекунд в классическом Ethernet. Сердцем же новых инстансов AWS стало пятое поколение аппаратных гипервизоров Nitro 5. В сравнении с предыдущим поколением, Nitro 5 обладает вдвое более высокой вычислительной производительностью, на 50 % повышенной пропускной способностью памяти, а также позволяет обрабатывать на 60 % больше сетевых пакетов при сниженной на 30 % латентности. ![]() Здесь и далее источник изображений: AWS Инстансы Hpc7g с процессорами Graviton3E получат внутреннюю сеть с пропускной способностью 200 Гбит/с и станут доступны в различных конфигурациях вплоть до 64 vCPU и 128 ГиБ памяти. Аналогичные параметры имеют инстансы C7gn, предназначенные для задач с интенсивным сетевым трафиком: виртуальных маршрутизаторов, сетевых экранов, балансировщиков нагрузки и т.п. Также компания анонсировала инстансы R7iz, в которых используются процессоры Intel Xeon Scalable четвёртого поколения (Sapphire Rapids) с постоянной частотой всех ядер 3,9 ГГц. Они могут иметь конфигурацию до 128 vCPU с 1 ТиБ памяти.
14.11.2022 [00:00], Игорь Осколков
Игра по новым правилам: AMD представила Genoa, четвёртое поколение серверных процессоров EPYCВсего за десять лет AMD совершила почти невозможное — практически полностью потеряла серверный рынок, а теперь не просто успешно его отвоёвывает, но и предлагает комплексное портфолио решений. Анонс четвёртого поколения процессоров EPYC под кодовым именем Genoa — это не технологическая победа над Intel, поскольку AMD даже не думала бороться с Sapphire Rapids и уж тем более с Ice Lake-SP, а ориентировалась на Granite Rapids. Но годовая задержка с выпуском Sapphire Rapids позволила AMD не только в более спокойном темпе доделывать чипы Genoa, которые вышли на полгода позже, чем задумывалось ранее, но и поработать с разработчиками и заказчиками. Компании удалось вернуть их доверие — победа в умах гораздо важнее, чем просто технологическое превосходство. А оно неоспоримо. EPYC Genoa заключены в корпус 72×75 мм, содержат до 90 млрд транзисторов и состоят из 13 чиплетов: 12 CCD, изготовленных по 5-нм техпроцессу TSMC плюс один, изрядно увеличившийся в размерах, IO-блок, сделанный там же, но уже по 6-нм нормам. Отказ от услуг GlobalFoundries, которая так и не смогла освоить тонкие техпроцессы, случился как нельзя кстати, поскольку IO-блок становится крайне важным компонентом при таком количестве ядер, которые необходимо вовремя накормить данными. И Genoa интересны в первую очередь с точки зрения полноты и разнообразия IO, а не рекордного количества ядер. IO-чиплет оснащён новыми SerDes-блоками, которые обслуживают и PCIe 5.0, и Infinity Fabric 3.0 (IF/GMI3). Формально каждому чипу полагается 128 линий PCIe 5.0, но реальная конфигурация чуть сложнее. Во-первых, у каждого чипа есть ещё восемь (2 x4) бонусных линий PCIe 3.0 для подключения нетребовательных устройств и обвязки, но в 2S-конфигурации таких линий будет только 12. Во-вторых, для 2S можно задействовать три (3Link) или четыре (4Link) IF-подключения, получив 160 или 128 свободных линий PCIe 5.0 соответственно. В-третьих, каждый root-комплекс x16 может быть поделён между девятью устройствами (вплоть до x8 + восемь x1). Часть линий можно отдать на SATA (до 32 шт.), хотя это довольно расточительно. Но главное не это! Из 128 линий 64 поддерживают в полном объёме CXL 1.1 и частично CXL 2.0 Type 3, причём возможна бифуркация вплоть до x4. Ради такой поддержки CXL выход Genoa задержался на два квартала, но оно того определённо стоило — к процессору можно подключать RAM-экспандеры. И решения SK Hynix уже валидированы для новой платформы. CXL-память будет выглядеть как NUMA-узел (без CPU) — задержки обещаны примерно те же, что и при обращении к памяти в соседнем сокете, а пропускная способность одного CXL-подключения x16 почти эквивалентна двум каналам DDR5. При этом для CXL-памяти прозрачно поддерживаются всё те же функции безопасности, включая SME/SEV/SNP (теперь ключей стало аж 1006, а алгоритм обновлён до 256-бит AES-XTS). Отдельно для CXL-памяти внедрена поддержка SMKE (secure multi-key encryption), с помощью которой гипервизор может оставлять зашифрованными выбранные области SCM-устройств (до 64 ключей) между перезагрузками. Такая гибкость при работе с памятью крайне важна для тех же гиперскейлеров. DDR5 по сравнению с DDR4 вчетверо плотнее, вполовину быстрее и… пока значительно дороже. И здесь AMD снова пошла им навстречу, добавив поддержку 72-бит памяти, а не только стандартной 80-бит, сохранив и расширив механизмы коррекции ошибок. 10-% разница в количестве DRAM-чипов при сохранении той же ёмкости на масштабах в десятки и сотни тысяч серверов выливается в круглую сумму. Кроме того, в Genoa сглажена разница в производительности между одно- и двухранговыми модулями с 25 % (в случае Milan) до 4,5 %. Что примечательно, AMD удалось сохранить сопоставимый уровень задержки обращений к памяти между поколениями CPU: 118 нс против 108 нс, из которых только 3 нс приходится на IO-блок, а 10 нс уже на саму память. Теоретическая пиковая пропускная способность памяти составляет 460,8 Гбайт/с на сокет. Однако тут есть нюансы. Genoa имеет 12 каналов памяти DDR5-4800, которые способны вместить до 6 Тбайт RAM. Однако сейчас фактически доступен только режим 1DPC, а вот 2DPC, судя по всему, появится только в следующем году. Genoa поддерживает модули (3DS) RDIMM и предлагает чередование с шагом в 2, 4, 6, 8, 10 или 12 каналов. Каждый чип можно разбить на два (NPS2) или четыре (NPS4) равных NUMA-домена, а при большом желании и «прибить» L3-кеш к ядрам в том же CCD, получив уже 12 доменов. Но, по словам AMD, это нужно лишь в редких случаях, чтобы выжать ещё несколько процентов производительности. И это снова возвращает нас к особенностям IO-блока. Дело в том, что у каждого CCD есть сразу два GMI-порта. Но в конфигурациях с 8 и 12 CCD используется только один из них, а вот в случае 4 CCD — оба. Интересно, задействует ли AMD «лишние» порты для подключения других блоков. Впрочем, AMD, имея столь гибкие возможности конфигурации моделей, ограничилась относительно скромным начальным набором CPU, которые включает всего 18 моделей с числом ядер от 16 до 96, из которых четыре имеют индекс P (односокетные, чуть дешевле) и четыре — F (выше частота, больше объём L3-кеша). Модельный ряд условно делится на три группы: повышенная производительность на ядро (F-серия), повышенная плотность ядер и повышенный показатель TCO (с относительно малым количеством ядер). На первый взгляд может показаться, что и цены на новинки заметно выросли, но это не совсем так. Например, у топовых моделей условная стоимость одного ядра (а их стала в полтора раза больше) так и крутится около «магического» значения в $123. Но с учётом возросшей производительности на ценовую политику AMD просто грех жаловаться. Прирост IPC между Zen3 и Zen4 составил 14 %, в том числе благодаря увеличению L2-кеша до 1 Мбайт на ядро (L1 и L3 остались без изменений), но не только. Есть и другие улучшения. Например, обновлённый контроллер прерываний AVIC позволяет практически полностью насытить не только 200G, но 400G NIC. С учётом чуть возросших частот и просто катастрофической разнице в количестве ядер топовый вариант Genoa не только значительно обгоняет Milan, но и в два-три раза быстрее старшего Ice Lake-SP. Дело ещё в и том, что Genoa обзавелись поддержкой AVX-512, в том числе инструкций VNNI (DL Boost), которыми так долго хвасталась Intel, а также BF16. Но реализация сделана иначе. У Intel используются «полноценные» 512-бит блоки, дорогие с точки зрения энергопотребления и затрат кремния. AMD же пошла по старому пути, используя 256-бит операции и несколько циклов, что позволяет не так агрессивно сбрасывать частоты. Переход на новый техпроцесс, а также обновлённые подсистемы мониторинга и управления питанием позволили сохранить TDP в разумных пределах от 200 Вт до 360 Вт (cTDP до 400 Вт), что всё ещё позволяет обойтись воздушным охлаждением — всего + 80 Вт для старших процессоров при полуторакратном росте числа ядер. Таким образом, AMD имеет полное право заявлять, что Genoa лидирует по производительности, плотности размещения вычислительных мощностей, энергоэффективности и, в целом, по уровню TCO. У Intel же пока преимущество в более высокой доступности продукции в сложившейся геополитической обстановке. Отдельный вопрос, как AMD будет распределять имеющиеся мощности по выпуску Genoa между гиперскейлерами, корпоративным сектором и HPC-сегментом. Впрочем, компания в любом случае меняет рынок, иногда неожиданным образом. В частности, VMware, которая когда-то из-за EPYC изменила политику лицензирования, была вынуждена дополнительно оптимизировать свои продукты для Genoa. В конце концов, где вы раньше видели 2S-платформу со 192 ядрами и 384 потоками? |
|