Материалы по тегу: cpu
17.01.2023 [15:33], Сергей Карасёв
Intel Xeon на китайский лад: Montage представила защищённые процессоры Jintide четвёртого поколения на базе Sapphire RapidsКитайская компания Montage Technology анонсировала процессор Jintide четвёртого поколения, рассчитанный на облачные платформы, корпоративные нагрузки, ИИ-приложения и системы НРС. В основу решения положен новейший чип Intel Xeon Sapphire Rapids, о котором можно подробно узнать в нашем материале. Ключевые отличия Jintide от стандартных Xeon заключаются в расширенных функциях безопасности. В новинках используются технологии PrC и DSC, которые обеспечивают различные уровни аппаратной защиты. Кроме того, такие чипы лучше адаптированы под потребности китайских поставщиков серверного оборудования. Решения Jintide совместимы с экосистемой x86, обладают хорошей масштабируемостью, гибкостью и удобством использования. Jintide — это комплексная платформа Montage, работающая в тандеме с фирменными гибридными модулями оперативной памяти HSDIMM, которые также обеспечивают защиту на аппаратном уровне. Конфигурация Jintide четвёртого поколения включает до 48 вычислительных ядер и до 105 Мбайт кеша. Максимальная частота в турбо-режиме составляет 4,2 ГГц. Заявлена поддержка инструкций AMX (Advanced Matrix Extensions), памяти DDR5-4800 и 80 линий PCIe 5.0/CXL 1.1. Ранее Montage также представила CXL-экспандеры DDR4/DDR5. По запросу могут быть активированы дополнительные функции: Dynamic Load Balancer (DLB), Intel Data Streaming Accelerator (DSA), Intel In-Memory Analytics Accelerator (IAA), Intel In-Memory Analytics Accelerator и Intel QuickAssist (QAT).
11.01.2023 [03:00], Игорь Осколков
Асимметричный ответ: Intel официально представила процессоры Xeon Sapphire RapidsIntel официально представила серверные процессоры Xeon семейства Sapphire Rapids (SPR), выход которых изрядно задержался, а также ускорители ранее известные как Ponte Vecchio и теперь объединённые вместе с HBM-версиями SPR в отдельную HPC-серию Max. В этом поколении Intel не смогла догнать AMD EPYC Genoa по числу ядер, числу каналов памяти и линий PCIe, но заготовила ассиметричный, хотя и очень странно реализованный ответ. Всего представлено 52 модели с числом P-ядер от 8 до 60 и с TDP от 125 до 350 Вт. По числу ядер это существенный апгрейд по сравнению с Ice Lake-SP (до 40 ядер), да и IPC вырос у Golden Cove на 15 % в сравнении с Sunny Cove. Но это существенный проигрыш в сравнении с Genoa (до 96 ядер), особенно если учитывать их максимальный TDP в 360 Вт (cTDP до 400 Вт). Правда, у Sapphire Rapids есть ещё и экономичный режим работы, в котором энергопотребление снижается на 20 %, а производительность для некоторых нагрузок — всего на 5 %. Sapphire Rapids предлагают 8 каналов памяти DDR5-4800 (1DPC) и DDR5-4400 (2DPC). 2DPC у Genoa пока что нет. Кроме того, контроллеры поддерживают и модули Optane PMem 300 (Crow Pass), но с учётом того, что производство 3D XPoint прекращено, достаться они могут не всем (впрочем, не всем они и нужны). Ну а маленькая серия Max также включает 64 Гбайт набортной HBM2e-памяти (1,2 Тбайт/с). Остались и отличия в максимальном объёме SGX-анклавов в зависимости от модели CPU. Однако по числу ядер на узел всё равно лидирует Intel. Если AMD поддерживает только 2S-конфигурации, то Intel снова предлагает и 4S, и 8S (а с момента выхода Cooper Lake-SP прошло немало времени) — на процессор доступно до 4 линий UPI 2.0 (16 ГТ/с в сравнении с 11,2 ГТ/с у Ice Lake-SP). В 2S-платформах Sapphire Rapids также формально обгоняет Genoa по числу линий PCIe 5.0, которых тут по 80 шт. на сокет. Формально потому, что в случае Genoa при желании всё же можно получить 160 линий, пожертвовав скоростью шины между CPU, но в односокетном варианте EPYC в любом случае интереснее Xeon. Без нюансов тут не обошлось. Так, при бифуркации до 8 x2 скорость падает до PCIe 4.0. Зато каждый root-комплекс поддерживает CXL 1.1, тогда как у Genoa CXL есть только у половины! Впрочем, поддержка всё равно ограничена 4x CXL-устройствами на CPU. Что ещё более странно, официально заявлена поддержка только устройств Type 1 и Type 2, но не Type 3, хотя последние весьма пригодились бы в ряде конфигураций, где требуется больше относительно недорогой, пусть и несколько более медленной, RAM. Сохранилось традиционное разделение на серии Platinum (8000), Gold (6000/5000), Silver (4000) и Bronze (3000), к которым теперь добавилась серия Max (9400). Список суффиксов, означающих оптимизацию под те или иные задачи и наличие каких-то особенностей, стал чуть шире: Y (SST-PP 2.0), Q (рассчитаны на работу с СЖО), U (односокетные общего назначения), T (увеличенный жизненный цикл), H (in-memory СУБД, аналитика, виртуализация), N (сетевые решения, в том числе для 5G), облачные P/V/M (IaaS/Paa/медиа), S (СХД и HCI). Но некоторые модели также имеют в названии «+». И вот тут начинается самое интересное! Все процессоры получили «традиционную» (в сравнении с Genoa) реализацию AVX-512, включая DL Boost, а также целый новый набор ИИ-инструкций AMX (до 10 раз быстрее обучение и инференс в сравнении с Ice Lake-SP). Есть и всяческие Speed Select, DDIO, TDX, CET и т.д. Но Sapphire Rapids также получили четыре отдельных ускорителя:
Intel заявляет, что средний прирост производительности Sapphire Rapids в сравнении с Ice Lake-SP составил 1,53 раза. А вот для ряда нагрузок, которые могут задействовать новые ускорители прирост производительности на Вт составляет уже до 2,9 раз! То есть Intel продолжает придерживаться стратегии создания максимально универсальных CPU для различных нагрузок. И действительно, спорить с гибкостью Sapphire Rapids трудно. Но какой ценой это достигается? Т.е. буквально: во сколько это обойдётся заказчику? Ответа пока нет. Дело в том, что в зависимости от модели отличается число доступных и число активированных ускорителей. Фактически в новом поколении используется два вида кристаллов: XCC, «сшитые» из четырёх отдельных тайлов, и монолитные MCC (до 32 ядер, причём 32-ядерных моделей в серии большинство). У каждого тайла в XCC есть по одному блоку QAT, DSA, DLB и IAA, т.е. суммарно на CPU приходится до четырёх ускорителей каждого типа. В случае MCC может быть по два QAT и DLB и по одному DSA и IAA на процессор. Например, у тех моделей, что помечены «+», активно по одному блоку каждого типа, а минимум один DSA активен есть вообще у всех CPU. За не активированные по умолчанию ускорители придётся заплатить в рамках программы Intel On Demand (SDSi), причём есть опции как с единовременным платежом за постоянную активацию, так и с оплатой по факту использования (это удобно в случае облаков и платформ по типу HPE Greenlake). Исключением являются H-модели, куда входит и самый дорогой ($17000) 60-ядерный процессор 8490H с полностью разблокированными ускорителями и поддержкой 8S-конфигураций, а также процессоры Max, которым доступно только четыре DSA-блока и 2S-платформы, например, 56-ядерный 9480 ($12980). С одной стороны, желание Intel предоставить больше гибкости заказчикам, а заодно чуть увеличить выход годных к продаже процессоров, понятно. С другой — не очень-то и похоже, что CPU без «лишних» ускорителей отдаются с какой-то существенной скидкой. При этом транзисторный бюджет на них всё равно расходуется. Кроме того, есть ещё момент востребованности этих ускорителей и готовности ПО. У Intel есть и опыт ресурсы для помощи разработчикам, но процесс адаптации в любом случае не мгновенен. Впрочем, у Intel по сравнению с AMD есть и ещё одно важное преимущество — в среднем более высокая доступность процессоров для большинства заказчиков. Так что с Sapphire Rapids может повториться та же история, что с Ice Lake-SP, когда вендоры здесь и сейчас готовы были предложить Intel-платформы. В целом же, в новом семействе наиболее любопытны Xeon Max, которые, по словам Intel, по сравнению с прошлым поколением в 3,7 раз производительнее в задачах, завязанных на пропускную способность памяти (а это целый пласт HPC-нагрузок), и которые не так уж дороги. Правда, и здесь без приключений не обошлось — несчастный суперкомпьютер Aurora ожидает утомительный апгрейд его 10 тыс. узлов c простых Xeon Sapphire Rapids на Xeon Max — по полчаса на каждый узел.
28.12.2022 [18:19], Сергей Карасёв
Китайский процессор Loongson 3D5000 содержит 32 ядра в чиплетной компоновкеКитай, находящийся под гнётом американских санкций, продолжает разрабатывать собственные альтернативы аппаратным решениям AMD, Intel и NVIDIA. Очередным таким продуктом, как сообщает ресурс Tom's Hardware, стал процессор Loongson 3D5000. Изделие имеет чиплетную компоновку в упаковке LGA 4129 (75,4 × 58,5 × 6,5 мм) и включает два чипа 3C5000, каждый из которых содержит 16 ядер на микроархитектуре LoongArch, 64 Мбайт кеш-памяти и четыре канала DDR4-3200 ECC. Таким образом, процессор Loongson 3D5000 насчитывает 32 вычислительных ядра LA464 (архитектура LoongArch). В одном сервере могут быть объединены до четырёх таких чипов, что даст в сумме 128 ядер. Изделие рассчитано на разъём. Процессор может быть сконфигурирован для работы на частоте 2,0 ГГц или 2,2 ГГц: в первом случае показатель TDP достигает 130 Вт, во втором — 170 Вт. При этом у одного чипа 3C500 заявленный уровень TDP составляет 150 Вт при частоте 2,2 ГГц. Производством Loongson 3D5000 займётся китайская Semiconductor Manufacturing International Corporation (SMIC). Уже раскрываются показатели быстродействия изделия: в тесте SPEC CPU2006 оно показывает результат в 400 баллов и более 800 баллов в двухсокетной конфигурации. Таким образом, система с четырьмя чипами должна выдать до 1600 баллов. Пробные поставки процессора будут организованы в первой половине 2023 года.
16.12.2022 [23:14], Алексей Степин
IBM анонсировала 24-ядерный процессор POWER10Чипы IBM POWER отстают от общей тенденции в процессоростроении, нацеленной на увеличение количества ядер: 128 ядер на разъём давно не предел для Arm и даже x86-64 вплотную подобралась к этой цифре с 96-ядерными AMD EPYC Genoa. На их фоне 15-ядерные POWER10 даже с SMT8 смотрятся бледновато, а в системах начального уровня и вовсе используются 4- или 8-ядерные CPU. С недавних пор компания даже стала предлагать их по подписке. Но, как отмечает The Register, вскоре ситуация чуть изменится. Для того, чтобы упрочнить позицию своей архитектуры, IBM объявила о планах по выпуску 24-ядерного процессора POWER10, который, в первую очередь, будет нацелен на пользователей СУБД Oracle. В таких случаях обычно остро встаёт вопрос лицензирования, однако IBM отметила, что лицензия Oracle Database SE2 предусматривает увеличение количества ядер без повышения стоимости при условии, что количество разъёмов в системе остаётся неизменным. Данный тип лицензии поддерживает не более 2 сокетов и предполагает некоторые ограничения. Самым дешёвым решением IBM POWER, способным работать с ПО Oracle, является S1014 (модель 9105-41B). Это однопроцессорный сервер начального уровня, владельцы которого могут серьёзно выиграть от перехода с 8-ядерного процессора на 24-ядерный. Разумеется, речь идёт только об экономии на лицензиях ПО — насколько 24-ядерная версия POWER10 будет дороже своих 8-ядерных собратьев, пока неизвестно. Но техническая информация о данной системе на сайте IBM уже обновлена. Отметим, что компании, чьи доходы строятся на лицензировании ПО, знают о росте количества ядер на процессорный разъём и могут менять условия лицензий. В частности, с появлением односокетных 64-ядерных систем на базе AMD EPYC стоимость лицензий VMware стала рассчитываться исходя из количества ядер, а не физических процессоров. На этом фоне ход IBM выглядит достаточно щедрым. UPD: IT Jungle указывает на важный нюанс — Oracle Database SE2 оценивается в $17500/сокет, причём в случае модульного дизайна CPU (DCM) каждый модуль считается отдельным процессорным разъёмом, тогда как Enterprise Edition обойдётся уже в $47500/ядро. Однако SE2 позволяет использовать только 16 потоков, что даёт всего 2 ядра с SMT8. Так что 24 ядра теоретически позволят запустить несколько экземпляров SE2.
15.12.2022 [23:29], Алексей Степин
MIPS представила eVocore P8700, своё первое высокопроизводительное ядро RISC-VПроцессоры с архитектурой MIPS всё ещё используются в ряде приложений, но активно вытесняются отовсюду архитектурами Arm, а в последнее время и RISC-V. Сама MIPS Technologies после многочисленных проблем более развивать и поддерживать MIPS-решения не намерена (но получать лицензионные отчисления за имеющиеся решения всё ещё готова). Компания официально переключилась на RISC-V и на днях анонсировали eVocore P8700, своё первое ядро на базе данной архитектуры. Новый дизайн предусматривает наличие от 1 до 8 вычислительных ядер с внеочередным исполнением, объединённых в комплексы размером от 1 до 64 кластеров (512 ядер). Также любопытно, что поддерживается и SMT2, что не очень характерно, к примеру, для высокопроизводительных процессоров на базе архитектуры Arm. Это в максимальной кластерной конфигурации дает поддержку одновременного исполнения 1024 потоков. Основой нового ядра является 16-стадийный конвейер шириной 8 инструкций, позволяющий достигать высоких тактовых частот. Используется 48-битная физическая адресация памяти, в качестве системной шины задействована 256-бит ACE/AXI-4; опционально в процессоре на базе P8700 могут присутствовать дополнительные 128-бит шины AXI-4 для периферии и обеспечения когерентности в мультикластерных конфгурациях. Новинка характеризуется сочетанием высокой производительности с энергоэффективностью; благодаря этому разработчики нацеливают её, главным образом, на рынок транспортных средств — для применения в системах помощи водителю (ADAS) и в системах автопилотов. Также eVocore P8700 может найти применение и в составе классических процессоров для серверов, СХД и даже HPC-систем. Новое ядро соответствует стандартам ASIL-D и содержит встроенные средства диагностики, для чего в составе предусмотрена специальная шина мониторинга, позволяющая системе быстро восстанавливать работоспособность после сбоя, что крайне важно для применения на транспорте. По словам MIPS, новое ядро обладает наивысшей однопоточной производительностью в своём классе. С этим утверждением, вероятно, сможет поспорить Ventana Micro Systems, также анонсировавшая производительное ядро RISC-V для процессора Veyron V1. Однако новинка MIPS уже лицензирована крупным разработчиком автопилотов и ADAS Mobileye для использования в чипах EyeQ. Следует также отметить, что в арсенале MIPS имеются и другие реализации RISC-V, в частности, ядро eVocore I8500, которое не поддерживает внеочередного исполнения инструкций, зато реализует SMT4, что даёт 2048 потоков в 512-ядерном кластере. Кроме того, оба ядра доступны в рамках программы Intel Pathfinder.
13.12.2022 [21:52], Алексей Степин
Ventana анонсировала первый по-настоящему серверный RISC-V процессор Veyron V1: 192 ядра с частотой 3,6 ГГцАрхитектура RISC-V достаточно молода и обычно ассоциируется с экономичными чипами на платах, подобных Raspberry Pi. Однако технически она позволяет создавать и мощные процессоры, способные поспорить с лучшими решениями на базе архитектур Arm и x86. На саммите RISC-V компания Ventana Micro Systems анонсировала целое семейство высокопроизводительных процессоров, первенцем в котором стал чип Veyron V1, который, по словам разработчиков, сможет потягаться в однопоточной производительности с самыми современными CPU класса High-End. Новинка нацелена на рынок гиперскейлеров, причём благодаря чиплетному дизайну новый процессор изначально разрабатывался как кастомизируемый под задачи заказчика. Veyron V1 будет предлагаться в виде своеобразного набора-конструктора, включающего в себя один или несколько вычислительных чиплетов Veyron, I/O-хаба и интерконнекта, позволяющего связать все компоненты воедино. Это, по словам разработчиков, должно серьёзно ускорить и удешевить процесс внедрения новой процессорной платформы, снизив расходы на разработку чипов на 75 %, а время создания — до не более чем двух лет. Вычислительный чиплет Veyron V1 использует продвинутые 64-битные ядра RISC-V и располагает 2 Мбайт кеша L2, а также многопоточным контроллером памяти. Предусмотрены конфигурации чиплета с 6, 8, 12 или 16 ядрами с частотой в районе 3 ГГц, что сопоставимо с решениями Google и AWS. Использоваться процессор может не только в ЦОД, но и в различных встраиваемых системах, базовых станциях 5G или даже клиентских рабочих станциях. Архитектурно дизайн Veyron V1 использует агрессивный конвейер шириной восемь инструкций и с внеочередным исполнением. Чип способен работать на частоте до 3,6 ГГц благодаря использованию 5 нм техпроцесса TSMC. I/O-хаб может производиться с использованием более дешёвых 12 или даже 16-нм техпроцессов. Для соединения компонентов процессора разработан специальный низколатентный интерконнект D2D. Каждый чиплет включает в себя до 16 ядер, предусмотрена возможность масштабирования процессора до 192 ядер в 12 чиплетах. Общий объём разделяемого кеша L3 составляет 48 Мбайт. Заявлен высокий уровень защищённости архитектуры от атак по сторонним каналам. Разработчики заявляют о беспрецедентно низком энергопотреблении: 128 ядер V1 уложатся в 280 Вт; AMD EPYC 7763 потребляет столько же при вдвое меньшем числе ядер. Анонс Ventana нельзя назвать «бумажным» — компания говорит о доступности комплектов разработчика, причём сразу в двух типах шасси: в настольном и в серверном корпусе высотой 2U. Конфигурация включает в себя 16-ядерную версию V1, 128 гбайт памяти DDR5, подключенной с помощью интерфейса CXL (PCIe 5.0) x16, два свободных слота расширения PCIe 5.0 x16, загрузочный накопитель NVMe M.2 и 8 NVMe SFF SSD формата 2,5" для хранения данных. Для удалённого управления предусмотрен 1GbE-порт. Компания не забыла и о поддержке со стороны программного обеспечения: платформы разработчика Ventana Veyron V1 будут сопровождаться полноценным SDK с основным ПО, уже портированным на новую архитектуру. В список входят компиляторы GCC и LLVM, отладчик OpenOCD/GDB, исходные коды и бинарные файлы загрузчиков U-Boot и Tianocore UEFI EDK2.1. Поддерживается ряд дистрибутивов Linux, а также другое системное и прикладное ПО. Ожидается, что новые системы будут доступны в начале следующего года.
29.11.2022 [17:12], Алексей Степин
AWS представила Arm-процессор Graviton3E, оптимизированный для задач ИИ и HPCОдин из крупнейших облачных провайдеров, компания Amazon Web Services объявила о доступности новых инстансов EC2 на базе процессора Graviton3E. Новый чип — наследник анонсированного в конце 2021 года Graviton3, 5-нм 64-ядерного процессора на дизайне Arm Neoverse V1 (Zeus) с поддержкой DDR5 и PCI Express 5.0. Graviton3 использует набор команд Armv8.4 c расширениями Neon (4×128 бит) и SVE (2×256 бит) и поддерживает работу с популярными в сфере машинного обучения форматами данных INT8 и BF16. В сравнении c Graviton2 процессор быстрее на 25-60 % при сохранении аналогичного уровня тепловыделения. Дизайн серверов AWS предусматривает наличие трёх процессоров на узел высотой 1U. Новый процессор Graviton3E представляет собой дальнейшее развитие Graviton3. Чип оптимизирован с учётом потребностей рынка высокопроизводительных вычислений и основное внимание в его архитектуре уделено повышению производительности на операциях с плавающей запятой и вычислениях с использованием векторной математики. AWS, к сожалению, пока не раскрывает деталей относительно архитектуры Graviton3E, но прирост производительности на векторных операциях относительно обычного Graviton3 может достигать 35 %. Помимо классического теста HPL новый процессор хорошо проявляет себя в тестах, имитирующих медико-биологические и финансовые задачи. Сценарии нагрузок, характерные для HPC, как правило, активно оперируют перемещением крупных объемов данных. Чтобы оптимизировать этот процесс, в новых инстансах AWS использует сеть на базе Elastic Fabric с новыми адаптерами Elastic Network Adapter (ENA). Такая сеть оперирует т. н. Scalable Reliable Datagram (SRD) вместо всем привычных TCP-пакетов. SRD позволяет организовать повторную отправку пакетов за микросекунды вместо миллисекунд в классическом Ethernet. Сердцем же новых инстансов AWS стало пятое поколение аппаратных гипервизоров Nitro 5. В сравнении с предыдущим поколением, Nitro 5 обладает вдвое более высокой вычислительной производительностью, на 50 % повышенной пропускной способностью памяти, а также позволяет обрабатывать на 60 % больше сетевых пакетов при сниженной на 30 % латентности. Инстансы Hpc7g с процессорами Graviton3E получат внутреннюю сеть с пропускной способностью 200 Гбит/с и станут доступны в различных конфигурациях вплоть до 64 vCPU и 128 ГиБ памяти. Аналогичные параметры имеют инстансы C7gn, предназначенные для задач с интенсивным сетевым трафиком: виртуальных маршрутизаторов, сетевых экранов, балансировщиков нагрузки и т.п. Также компания анонсировала инстансы R7iz, в которых используются процессоры Intel Xeon Scalable четвёртого поколения (Sapphire Rapids) с постоянной частотой всех ядер 3,9 ГГц. Они могут иметь конфигурацию до 128 vCPU с 1 ТиБ памяти.
26.11.2022 [15:00], Сергей Карасёв
Ядерный проект «Прорыв» получит серверы на предсерийных чипах «Эльбрус-16С»ЦОД российского проекта «Прорыв», в реализации которого участвуют более 30 организаций государственной корпорации «Росатом», обзаведётся серверами на отечественных процессорах «Эльбрус-16С». Они пока так и не поступили в серийное производство. О чипах «Эльбрус-16С» можно узнать в нашем материале. Они содержат 16 вычислительных ядер с архитектурой «Эльбрус» шестого поколения. Тактовая частота достигает 2,0 ГГц. Возможна работа с оперативной памятью DDR4-3200 с ECC. Реализована аппаратная поддержка защищённых вычислений и виртуализации. Как сообщается на портале госзакупок, заказчиком новых серверов является Акционерное общество «Прорыв». Речь идёт о поставке специализированного импортонезависимого оборудования для обеспечения модернизации ЦОД ПН «Прорыв». Тендер объявлен 27 октября 2022 года, а приём заявок завершился 7 ноября. Единственным участником и победителем конкурса стало Общество с ограниченной ответственностью «Эльбрус-2000». Сумма контракта составила 15 720 207 руб. Договором предусмотрена поставка серверов 2U-2Э16-SC разработки МЦСТ, а также лицензий на операционную систему «Альт Сервер 10» («Базальт СПО»). Известно, что модель 2U-2Э16-SC — двухпроцессорный сервер, предназначенный для использования в гиперконвергентных инфраструктурах. Допускается работа с ускорителями вычислений, а также со средствами хранения данных с применением высокоскоростных контроллеров ввода-вывода. Серийное производство чипов «Эльбрус-16С» планировалось начать в нынешнем году, но из-за сложившейся геополитической обстановки сделать это пока не удалось. Вероятно, заказанные серверы базируются на предсерийных образцах процессора. Что касается проекта «Прорыв», то он предусматривает создание новой технологической платформы атомной отрасли на базе замкнутого ядерного топливного цикла с использованием реакторов на быстрых нейтронах. Технология позволит исключить тяжёлые аварии на АЭС, вырабатывать электроэнергию без накопления облучённого ядерного топлива и многократно повторно использовать отработавшее ядерное топливо.
14.11.2022 [00:00], Игорь Осколков
Игра по новым правилам: AMD представила Genoa, четвёртое поколение серверных процессоров EPYCВсего за десять лет AMD совершила почти невозможное — практически полностью потеряла серверный рынок, а теперь не просто успешно его отвоёвывает, но и предлагает комплексное портфолио решений. Анонс четвёртого поколения процессоров EPYC под кодовым именем Genoa — это не технологическая победа над Intel, поскольку AMD даже не думала бороться с Sapphire Rapids и уж тем более с Ice Lake-SP, а ориентировалась на Granite Rapids. Но годовая задержка с выпуском Sapphire Rapids позволила AMD не только в более спокойном темпе доделывать чипы Genoa, которые вышли на полгода позже, чем задумывалось ранее, но и поработать с разработчиками и заказчиками. Компании удалось вернуть их доверие — победа в умах гораздо важнее, чем просто технологическое превосходство. А оно неоспоримо. EPYC Genoa заключены в корпус 72×75 мм, содержат до 90 млрд транзисторов и состоят из 13 чиплетов: 12 CCD, изготовленных по 5-нм техпроцессу TSMC плюс один, изрядно увеличившийся в размерах, IO-блок, сделанный там же, но уже по 6-нм нормам. Отказ от услуг GlobalFoundries, которая так и не смогла освоить тонкие техпроцессы, случился как нельзя кстати, поскольку IO-блок становится крайне важным компонентом при таком количестве ядер, которые необходимо вовремя накормить данными. И Genoa интересны в первую очередь с точки зрения полноты и разнообразия IO, а не рекордного количества ядер. IO-чиплет оснащён новыми SerDes-блоками, которые обслуживают и PCIe 5.0, и Infinity Fabric 3.0 (IF/GMI3). Формально каждому чипу полагается 128 линий PCIe 5.0, но реальная конфигурация чуть сложнее. Во-первых, у каждого чипа есть ещё восемь (2 x4) бонусных линий PCIe 3.0 для подключения нетребовательных устройств и обвязки, но в 2S-конфигурации таких линий будет только 12. Во-вторых, для 2S можно задействовать три (3Link) или четыре (4Link) IF-подключения, получив 160 или 128 свободных линий PCIe 5.0 соответственно. В-третьих, каждый root-комплекс x16 может быть поделён между девятью устройствами (вплоть до x8 + восемь x1). Часть линий можно отдать на SATA (до 32 шт.), хотя это довольно расточительно. Но главное не это! Из 128 линий 64 поддерживают в полном объёме CXL 1.1 и частично CXL 2.0 Type 3, причём возможна бифуркация вплоть до x4. Ради такой поддержки CXL выход Genoa задержался на два квартала, но оно того определённо стоило — к процессору можно подключать RAM-экспандеры. И решения SK Hynix уже валидированы для новой платформы. CXL-память будет выглядеть как NUMA-узел (без CPU) — задержки обещаны примерно те же, что и при обращении к памяти в соседнем сокете, а пропускная способность одного CXL-подключения x16 почти эквивалентна двум каналам DDR5. При этом для CXL-памяти прозрачно поддерживаются всё те же функции безопасности, включая SME/SEV/SNP (теперь ключей стало аж 1006, а алгоритм обновлён до 256-бит AES-XTS). Отдельно для CXL-памяти внедрена поддержка SMKE (secure multi-key encryption), с помощью которой гипервизор может оставлять зашифрованными выбранные области SCM-устройств (до 64 ключей) между перезагрузками. Такая гибкость при работе с памятью крайне важна для тех же гиперскейлеров. DDR5 по сравнению с DDR4 вчетверо плотнее, вполовину быстрее и… пока значительно дороже. И здесь AMD снова пошла им навстречу, добавив поддержку 72-бит памяти, а не только стандартной 80-бит, сохранив и расширив механизмы коррекции ошибок. 10-% разница в количестве DRAM-чипов при сохранении той же ёмкости на масштабах в десятки и сотни тысяч серверов выливается в круглую сумму. Кроме того, в Genoa сглажена разница в производительности между одно- и двухранговыми модулями с 25 % (в случае Milan) до 4,5 %. Что примечательно, AMD удалось сохранить сопоставимый уровень задержки обращений к памяти между поколениями CPU: 118 нс против 108 нс, из которых только 3 нс приходится на IO-блок, а 10 нс уже на саму память. Теоретическая пиковая пропускная способность памяти составляет 460,8 Гбайт/с на сокет. Однако тут есть нюансы. Genoa имеет 12 каналов памяти DDR5-4800, которые способны вместить до 6 Тбайт RAM. Однако сейчас фактически доступен только режим 1DPC, а вот 2DPC, судя по всему, появится только в следующем году. Genoa поддерживает модули (3DS) RDIMM и предлагает чередование с шагом в 2, 4, 6, 8, 10 или 12 каналов. Каждый чип можно разбить на два (NPS2) или четыре (NPS4) равных NUMA-домена, а при большом желании и «прибить» L3-кеш к ядрам в том же CCD, получив уже 12 доменов. Но, по словам AMD, это нужно лишь в редких случаях, чтобы выжать ещё несколько процентов производительности. И это снова возвращает нас к особенностям IO-блока. Дело в том, что у каждого CCD есть сразу два GMI-порта. Но в конфигурациях с 8 и 12 CCD используется только один из них, а вот в случае 4 CCD — оба. Интересно, задействует ли AMD «лишние» порты для подключения других блоков. Впрочем, AMD, имея столь гибкие возможности конфигурации моделей, ограничилась относительно скромным начальным набором CPU, которые включает всего 18 моделей с числом ядер от 16 до 96, из которых четыре имеют индекс P (односокетные, чуть дешевле) и четыре — F (выше частота, больше объём L3-кеша). Модельный ряд условно делится на три группы: повышенная производительность на ядро (F-серия), повышенная плотность ядер и повышенный показатель TCO (с относительно малым количеством ядер). На первый взгляд может показаться, что и цены на новинки заметно выросли, но это не совсем так. Например, у топовых моделей условная стоимость одного ядра (а их стала в полтора раза больше) так и крутится около «магического» значения в $123. Но с учётом возросшей производительности на ценовую политику AMD просто грех жаловаться. Прирост IPC между Zen3 и Zen4 составил 14 %, в том числе благодаря увеличению L2-кеша до 1 Мбайт на ядро (L1 и L3 остались без изменений), но не только. Есть и другие улучшения. Например, обновлённый контроллер прерываний AVIC позволяет практически полностью насытить не только 200G, но 400G NIC. С учётом чуть возросших частот и просто катастрофической разнице в количестве ядер топовый вариант Genoa не только значительно обгоняет Milan, но и в два-три раза быстрее старшего Ice Lake-SP. Дело ещё в и том, что Genoa обзавелись поддержкой AVX-512, в том числе инструкций VNNI (DL Boost), которыми так долго хвасталась Intel, а также BF16. Но реализация сделана иначе. У Intel используются «полноценные» 512-бит блоки, дорогие с точки зрения энергопотребления и затрат кремния. AMD же пошла по старому пути, используя 256-бит операции и несколько циклов, что позволяет не так агрессивно сбрасывать частоты. Переход на новый техпроцесс, а также обновлённые подсистемы мониторинга и управления питанием позволили сохранить TDP в разумных пределах от 200 Вт до 360 Вт (cTDP до 400 Вт), что всё ещё позволяет обойтись воздушным охлаждением — всего + 80 Вт для старших процессоров при полуторакратном росте числа ядер. Таким образом, AMD имеет полное право заявлять, что Genoa лидирует по производительности, плотности размещения вычислительных мощностей, энергоэффективности и, в целом, по уровню TCO. У Intel же пока преимущество в более высокой доступности продукции в сложившейся геополитической обстановке. Отдельный вопрос, как AMD будет распределять имеющиеся мощности по выпуску Genoa между гиперскейлерами, корпоративным сектором и HPC-сегментом. Впрочем, компания в любом случае меняет рынок, иногда неожиданным образом. В частности, VMware, которая когда-то из-за EPYC изменила политику лицензирования, была вынуждена дополнительно оптимизировать свои продукты для Genoa. В конце концов, где вы раньше видели 2S-платформу со 192 ядрами и 384 потоками?
10.11.2022 [01:55], Игорь Осколков
Intel объединила HBM-версии процессоров Xeon Sapphire Rapids и ускорители Xe HPC Ponte Vecchio под брендом MaxВ преддверии SC22 и за день до официального анонса AMD EPYC Genoa компания Intel поделилась некоторыми подробностями об HBM-версии процессоров Xeon Sapphire Rapids и ускорителях Ponte Vecchio, которые теперь входят в серию Intel Max. Intel Xeon Max предложат до 56 P-ядер, 112,5 Мбайт L3-кеша, 64 Гбайт HBM2e-памяти (четыре стека) с пропускной способностью порядка 1 Тбайт/с, 8 каналов памяти (DDR5-4800 в случае 1DPC, суммарно до 6 Тбайт), а также интерфейсы PCIe 5.0, CXL 1.1, UPI 2.0 и целый ряд различных технологий ускорения для задач HPC и ИИ: AVX-512, DL Boost, AMX, DSA, QAT и т.д. Заявленный уровень TDP составляет 350 Вт. Первым процессором с набортной HBM-памятью был Arm-чип Fujitsu A64FX (48 ядер, 32 Гбайт HBM2), лёгший в основу суперкомпьютера Fugaku. Intel поднимает планку, давая более 1 Гбайт быстрой памяти на каждое ядро. А поскольку процессор состоит из четырёх отдельных чиплетов, возможно создание четырёх NUMA-доменов с выделенными HBM- и DDR-контроллерами. Но и монолитный режим тоже имеется. А поддержка CXL даёт возможность задействовать RAM-экспандеры. Intel Xeon Max поддерживают 2S-платформы, что суммарно даёт уже 128 Гбайт HBM-памяти, которых вполне хватит для целого ряда задач. Новые процессоры действительно могут обходиться без DIMM. Но есть и два других режима. В первом HBM-память работает в качестве кеша для обычной памяти, и для системы это происходит прозрачно, так что никаких модификаций для ПО (как в случае отсутствия DIMM вообще) не требуется. Во втором режиме HBM и DDR представлены как отдельные пространства, так что тут дорабатывать ПО придётся, зато можно добиться более эффективного использования обоих типов памяти. В презентации Intel сравнивает новые Xeon Max с AMD EPYC Milan-X – в зависимости от задачи прирост составляет от +20 % до 4,8 раз. Но, во-первых, уже сегодня эти тесты потеряют всякий смысл в связи с презентацией EPYC Genoa (которые, к слову, должны получить AVX-512), а во-вторых, в следующем году AMD обещает представить Genoa-X с 3D V-Cache. Intel же явно не оставляет попытки создать как можно более универсальный процессор. Что касается Ponte Vecchio, которые теперь называются Max GPU, то практически ничего нового относительно строения и особенностей данных ускорителей Intel не сказала: до 128 ядер Xe (только теперь стало известно об аппаратном ускорении трассировки лучей, что важно для визуализации), 64 Мбайт L1-кеша и аж 408 Мбайт L2-кеша (из них 120 Мбайт приходится на Rambo-кеш в двух стеках), 16 линий Xe Link, 8 HBM2e-контроллеров на 128 Гбайт памяти и пиковая FP64-производительность на уровне 52 Тфлопс. Все эти характеристики относятся к старшей модели Max Series 1550 в OAM-исполнении с TDP в 600 Вт. Max Series 1350 предложит 112 ядер Xe и 96 Гбайт HBM2e, но и TDP у этой модели составит всего 450 Вт. Для обеих OAM-версий также будут доступны готовые блоки из четырёх ускорителей (по примеру NVIDIA RedStone), объединённых по схеме «каждый с каждым», так что в сумме можно получить 512 Гбайт HBM2e с ПСП в 12,8 Тбайт/с. Ну а самый простой ускоритель в серии называется Max Series 1100. Это 300-Вт PCIe-плата с 56 Xe-ядрами, 48 Гбайт HBM2e и мостиками Xe Link. Intel утверждает, что ускорители Max до двух раз быстрее NVIDIA A100 в некоторых задачах, но и здесь история повторяется — нет сравнения с более современными H100. Хотя предварительный доступ к этим ускорителям у Intel есть, поскольку именно Sapphire Rapids являются составной частью платформы DGX H100. В целом, Intel прямо говорит, что наибольшей эффективности вычислений позволяет добиться связка CPU и GPU серии Max в сочетании с oneAPI. Всего на базе решений данной серии готовится более 40 продуктов. Пока что приоритетным для Intel проектом является 2-Эфлопс суперкомпьютер Aurora, для которого пока что создан тестовый кластер Sunspot со 128 узлами, содержащими ускорители Max. Следующим ускорителем Intel станет Rialto Bridge, который появится в 2024 году. Также компания готовит гибридные (XPU) чипы Falcon Shores, сочетающие CPU, ускорители и быструю память. Аналогичный подход применяют AMD и NVIDIA. |
|