Материалы по тегу: cerebras

23.05.2024 [09:57], Александр Бенедичук

Гигантские суперчипы Cerebras натренируют ИИ для армии Германии

Cerebras Systems и Aleph Alpha объединятся для разработки суверенных ИИ-решений в интересах армии Германии, сообщает Datacenter Dynamics. Работы альянса будут вестись совместно с компанией BWI GmbH, государственным поставщиком ИТ-услуг, принадлежащим Министерству обороны Германии. Aleph Alpha развернет первый в Европе ИИ-суперкомпьютер Cerebras CS-3 в своем дата-центре Alpha ONE.

«Мы считаем, что партнёрство [с Aleph Alpha] позволит создать совершенно новые архитектуры ИИ-моделей, которые могут быть полезны правительствам и предприятиям по всему миру», — сказал глава Cerebras, отметив, что работа с новыми моделями будет безопасной и защищённой, но не уточнив, что именно под этим подразумевается.

 Источник изображения: Cerebras

Источник изображения: Cerebras

Aleph Alpha основана в 2019 году для создания моделей генеративного ИИ в рамках концепции «суверенитета данных». ЦОД Alpha ONE был запущен в 2022 году в кампусе GovTech в Германии и используется для исследований и разработки ИИ-приложений как предприятиями государственного сектора, так и частными. Здесь Cerebras и Aleph Alpha будут вместе создавать базовые и мультимодальные модели, а также и новые архитектуры ИИ-моделей с использованием CS-3. В основе Cerebras CS-3 лежит ИИ-ускоритель WSE-3 размером с целую кремниевую пластину. Он содержит 4 трлн транзисторов, 900 тыс. ядер и 44 Гбайт SRAM, а его производительность составляет 125 Пфлопс в разреженных FP16-вычислениях.

Постоянный URL: http://servernews.ru/1105076
21.05.2024 [16:36], Руслан Авдеев

Core42 и Cerebras построят в Техасе ИИ-суперкомпьютер с 173 млн ядер

Базирующаяся в ОАЭ компания Core42 занялась строительством суперкомпьютера с 172 млн ядер, в эксплуатацию объект должны ввести до конца текущего года. HPC Wire сообщает, что компьютер Condor Galaxy 3 (CG-3) получит 192 узла с 5-нм мегачипами Cerebras WSE-3 и 172,8 млн ИИ-ядер.

WSE-3 в 50 раз крупнее актуальных ИИ-ускорителей NVIDIA и, конечно, гораздо производительнее. По данным Core42, развёртывание CG-3 в Далласе (Техас) начнётся в июне и завершится в сентябре–октябре. Core42 уже считается значимым игроком на рынке ЦОД, HPC- и ИИ-систем. Машины G42 уже попадали в TOP500 — это системы Artemis (NVIDIA) и POD3 (Huawei). Последняя покинула рейтинг в 2023 году.

Суперкомпьютер CG-3, как теперь сообщается, получит 192 узла CS-3. Каждый узел с чипом WSE-3 обеспечивает до 125 Пфлопс (FP16 с разрежением), так что общая производительность Condor Galaxy 3 составит 24 Эфлопс. Всего же Cerebras намеревается построить девять суперкомпьютеров семейства Condor Galaxy. Машины GC-1 и GC-2 на базе чипов WSE-2 также созданы при участии G42.

 Источник изображения: Cerebras

Источник изображения: Cerebras

Core42 появилась в 2023 году в результате слияния G42 Cloud и G42 Inception AI. Родительская компания G42, основанная в 2018 году, также сотрудничает с NVIDIA, AMD, OpenAI и другими компаниями. G42 не так давно попала под пристальное внимание американских властей. Её подозревали в том, что она помогала Китаю получать доступ к новейшим ускорителям NVIDIA и другому ИИ-оборудованию американских компаний. В результате, как считается, она была вынуждена отказать от сотрудничества с Huawei.

Также сообщалось, что G42 заключила с американским правительством взаимовыгодное секретное соглашение — компания обязалась лишить КНР доступа к ускорителям, а в ответ ей самой разрешали сохранить доступ к продукции NVIDIA. Не исключено, что были оговорены и иные пункты. По некоторым данным, именно в то же время, когда было заключено соглашение с руководством США, Microsoft инвестировала в G42 около $1,5 млрд.

Постоянный URL: http://servernews.ru/1105124
19.04.2024 [10:20], Сергей Карасёв

ИИ на воде: Cerebras установит оборудование в плавучем дата-центре Nautilus

Американский стартап Cerebras Systems, занимающийся разработкой ИИ-ускорителей, по сообщению Datacenter Dynamics, арендует площади в дата-центре на барже Nautilus Data Technologies в Калифорнии. В этом плавучем ЦОД применяется запатентованная технология жидкостного охлаждения Nautilus, основанная на использовании забортной воды.

Ранее Nautilus объявила, что неназванная компания в области ИИ подписала договор аренды на площадке в Стоктоне в конце 2023 года. Теперь выясняется, что этим клиентом является стартап Cerebras, который проектирует интегрированные чипы WSE (Wafer Scale Engine) размером с кремниевую пластину с сотнями тысяч ядер для работы с крупными ИИ-моделями.

 Источник изображения: Nautilus

Источник изображения: Nautilus

Дата-центр Nautilus в Стоктоне обладает мощностью 6,5 МВт и предлагает до 55 кВт на стойку. Заявленный уровень PUE — 1,15 вне зависимости от времени года или погодных условий. На объекте установлены резервные генераторы с запасом топлива, которого хватит на 26 часов работы при максимальной нагрузке. Забор воды для охлаждения осуществляется из реки Сан-Хоакин. Обеспечивается круглосуточный мониторинг территории усилиями местной службы безопасности, а также патрулирование наземных и водных путей Министерством внутренней безопасности, Береговой охраной США и Департаментом шерифа округа Сан-Хоакин.

В рамках подписанного договора Cerebras арендует 2,5 МВт. В ЦОД будут размещены системы Cerebras CS-3 на основе ускорителей WSE-3. Эти изделия насчитывают 4 трлн транзисторов, содержат 900 тыс. ядер и 44 Гбайт памяти SRAM. Заявленная производительность достигает 125 Пфлопс в FP16-вычислениях.

Постоянный URL: http://servernews.ru/1103535
13.03.2024 [22:40], Алексей Степин

Больше флопс за те же ватты: Cerebras представила царь-ускоритель WSE-3 и подружилась с Qualcomm

Компания Cerebras Systems, известная своими разработками в области сверхбольших ИИ-процессоров, рассказала о третьем поколении чипов Wafer Scale Engine. В своё время компания произвела фурор, представив процессор, занимающий всю площадь кремниевой пластины (46225 мм2). В первом поколении WSE речь шла о 1,2 трлн транзисторов при 400 тыс. ядер и 18 Гбайт сверхбыстрой памяти. WSE-2 состоял из 2,6 трлн транзисторов, имел 850 тыс. ядер и 40 Гбайт интегрированной памяти.

В WSE-3 разработчики перешли на использование 5-нм техпроцесса TSMC, что позволило разместить на пластине такого же размера уже 4 трлн транзисторов, составляющих 900 тыс. ядер и 44 Гбайт SRAM. Суммарная пропускная способность набортной памяти достигает 21 Пбайт/с, а внутреннего интерконнекта — 214 Пбит/с.

 Источник изображений: Cerebras

Источник изображений: Cerebras

Казалось бы, выигрыш в количестве ядер по сравнению с WSE-2 не так уж велик, однако на этот раз Cerebras сделала упор на архитектуру. Если верить заявлениям разработчиков, WSE-3 практически вдвое быстрее WSE-2 при сопоставимом уровне энергопотребления (15 кВт) и той же цене: 125 Пфлопс против 75 Пфлопс в разреженных FP16-вычислениях. WSE-3 в 62 раза быстрее NVIDIA H100, хотя и сам чип WSE-3 в 57 раз больше.

WSE-3 по-прежнему требует специфического окружения. Он станет сердцем новой системы CS-3 (23 кВт), содержащей всю необходимую сопутствующую инфраструктуру, включая СЖО, подсистемы питания, а также сетевого интерконнекта Ethernet. Последний не изменился и состоит из 12 каналов со скоростью 100 Гбит/с. Для подготовки «сырых» данных по-прежнему будет использоваться внешний суперсервер. А для их хранения будут использоваться узлы MemoryX ёмкостью до 1200 Тбайт (1,2 Пбайт).

Главной задачей CS-3 станет «натаскивание» сверхбольших языковых моделей, в 10 раз превышающих по количеству параметров GPT-4 и Google Gemini. Cerebras говорит о 24 трлн параметров, причём без необходимости различных ухищрений для эффективного распараллеливания процесса обучения, что требуется в случае с GPU-кластерами. По словам компании, для обучения Megatron 175B на таких кластерах требуется 20 тыс. строка кода Python/C++/CUDA, а в случае WSE-3 потребуется лишь 565 строк на Python.

CS-3 поддерживает масштабирование вплоть до 2048 систем. Такая конфигурация вкупе с MemoryX сможет обучить модель типа Llama 70B всего за день. Первый суперкомпьютер на базе CS-3 — 8-Эфлопс Condor Galaxy 3 — будет скромнее и получит всего 64 стойки CS-3, которые разместятся в Далласе (США). В совокупности с уже имеющимися кластерами на базе CS-1 и CS-2 вычислительная мощность систем Cerebras должна достигнуть 16 Эфлопс. В сотрудничестве c группой G42 запланировано создание ещё шести систем CS-3, что в сумме позволит довести производительность до 64 Эфлопс.

Condor Galaxy 3 будет отличаться от предшественников ещё одним нововведением: в рамках сотрудничества с Qualcomm Cerebras установит в новом кластере существенное число инференс-ускорителей Qualcomm Cloud AI100 Ultra. Каждый такой ускоритель имеет 64 ядра, 128 Гбайт памяти LPDDR4x, потребляет 140 Вт и развивает 870 Топс на INT8-операциях. Причём програмнный стек полностью интегрирован, что позволит в один клик запустить обученные WSE-3 модели на ускорителях Qualcomm.

Сотрудничество Cerebras и Qualcomm носит официальный характер, его целью является оптимизация ИИ-моделей для запуска на AI100 Ultra с учетом различных продвинутых техник, таких как разреженные вычисления, спекулятивное исполнение (сочетание малых LLM для получения быстрого результата с проверкой большой LLM), использование «сжатого» формата MxFP6 для весов и других. Благодаря мощностям, предоставляемым WSE-3, цикл разработки, оптимизации и тестирования таких моделей удастся существенно ускорить, что в итоге должно обеспечить десятикратное улучшение удельной производительности новых решений.

Постоянный URL: http://servernews.ru/1101667
27.01.2024 [22:18], Сергей Карасёв

Разработчик гигантских ИИ-чипов Cerebras намерен провести IPO во II половине 2024 года

Американский стартап Cerebras Systems, занимающийся разработкой чипов для систем машинного обучения и других ресурсоёмких задач, по информации Bloomberg, намерен осуществить первичное публичное размещение акций (IPO) во II половине текущего года. Соответствующие переговоры уже ведутся с консультантами.

Cerebras была основана в 2015 году. Она является разработчиком интегрированных чипов WSE (Wafer Scale Engine) размером с кремниевую пластину, которые содержат сотни тысяч тензорных ядер для работы с крупными ИИ-моделями. Компания осуществила несколько раундов финансирования, получив оценку на уровне $4 млрд. В число инвесторов входят Alpha Wave Ventures, Altimeter, Benchmark, Coatue, Eclipse, Moore и VY.

 Источник изображения: Cerebras

Источник изображения: Cerebras

Как сообщает Bloomberg, ссылаясь на информацию, полученную от осведомлённых источников, Cerebras ведёт переговоры о дополнительном привлечении средств в частном порядке перед IPO. Ожидается, что в рамках выхода на биржу оценочная стоимость стартапа превысит $4 млрд. Переговоры на тему публичного размещения акций продолжаются, но окончательное решение по данному вопросу пока не принято.

В июле 2023 года Cerebras объявила о создании первого из девяти запланированных ИИ-суперкомпьютеров. Система под названием Condor Galaxy 1 (CG-1) стоимостью $100 млн расположена в Санта-Кларе (Калифорния, США). Она обеспечивает производительность FP16 на уровне 2 Эфлопс. В проекте приняла участие холдинговая группа G42 из ОАЭ.

Кроме того, Cerebras сообщила о намерении поддержать пилотный проект Национального исследовательского ресурса по искусственному интеллекту (NAIRR), который реализуется Национальным научным фондом США (NSF). Cerebras предоставит специалистам NAIRR удалённый доступ к вычислительным ресурсам своего суперкомпьютера.

Постоянный URL: http://servernews.ru/1099391
29.11.2023 [01:21], Руслан Авдеев

Cerebras, критиковавшая NVIDIA за сотрудничество с Китаем, сама оказалась связана с компанией, ведущей дела с Пекином

Хотя стартап Cerebras, занимающийся разработкой чипов, раскритиковал NVIDIA за попытки обойти санкционные ограничения в отношении Китая и призвал соблюдать не букву, но дух американского закона, у компании, похоже, нашлись свои скелеты в шкафу. Как сообщает The Register, сейчас в США расследуют деятельность клиента Cerebras — группы G42, возможно, помогавшей Поднебесной обходить санкционные ограничения.

Американские спецслужбы подозревают, что базирующаяся в ОАЭ многопрофильная компания G42 поставляет в Китай передовые технологии. Для своих ИИ-исследований компания обратилась к Cerebras с целью постройки суперкомпьютерного кластера Condor Galaxy за $100 млн, а всего стартап намерен построить девять подобных объектов на $900 млн. При этом узлы кластера используют разработанные Cerebras чипы WSE-2, подходящие для обучения ИИ-систем.

 Источник изображения:  Arthur Wang/unsplash.com

Источник изображения: Arthur Wang/unsplash.com

Как показывают предварительные результаты расследования американских журналистов, властей и спецслужб, G42 пытается сотрудничать с Пекином и работает с китайскими компаниями вроде Huawei, давно находящимися под санкциями. В самой G42 утверждают, что принимают все меры для того, чтобы соблюдать американские ограничения. При этом, по данным журналистов, G42 считают прокси-компанией для работы в интересах КНР, помогающей Пекину получать вычислительные ресурсы и подсанкционные технологии.

По словам главы Cerebras Эндрю Фельдмана (Andrew Feldman), его компания точно не будет вести бизнес с Китаем. Бизнесмен попал в неловкую ситуацию после того, как появилась информация о тесных связях G42 с Пекином. На запрос журналистов в Cerebras заявили, что кластеры Condor Galaxy находятся в США, а G42 получает к ним облачный доступ, так что любая активность контролируется и соответствует американским законам — государства-противники не имеют прямого доступа к ИИ-системам. Фельдман якобы не знал о сомнительном статусе G42, а в стартапе подчеркнули, что не комментируют слухи.

Бюро промышленности и безопасности США уже обратилось к поставщикам облачных инфраструктур для консультаций о целесообразности дополнительных ограничений доступа к их услугам из некоторых стран. В частности, бюро интересует, как операторы намерены выявлять разработчиков ИИ-моделей, вызывающих обеспокоеность властей и что можно предпринять для устранения угроз. Кроме того, президент США предложил новые правила, согласно которым облакам потребуется докладывать о деятельности иностранцев, связанной с обучением больших языковых моделей (LLM).

Постоянный URL: http://servernews.ru/1096627
21.11.2023 [00:34], Руслан Авдеев

Cerebras раскритиковала NVIDIA за «вооружение» Китая ИИ-ускорителями

Глава Cerebras Эндрю Фельдман (Andrew Feldman) подверг критике NVIDIA за попытки компании уложиться в нормы, установленные новыми экспортными ограничениями США в отношении Китая, чтобы продолжить поставки ИИ-ускорителей в Поднебесную. Как передаёт The Register, такое поведение Фельдман назвал «неамериканским» и сравнил техногиганта с торговцем ИИ-оружием.

По словам Фельдмана, NVIDIA буквально единолично «вооружила» Китай, поставив огромное количество ускорителей. Хотя компания действовала в рамках закона, это не снимает с неё моральной ответственности. Сама Cerebras тоже разрабатывает чипы для систем машинного обучения и других ресурсоёмких задач, но намерена соблюдать «дух, а не букву» введённых в октябре США новых правил, ограничивающих поставки ИИ-оборудования в США.

Правила и без того фактически отрезают Пекин от поставок разработанных в США передовых ускорителей, но уже ходят слухи, что NVIDIA готовит новые продукты для того, чтобы обойти и эти ограничения. Раньше она уже выпустила «ухудшенные» A800 и H800, теперь тоже попавшие под ограничения. Неанонсированные чипы H20, L20 и L2 якобы представляют собой менее производительные версии более быстрых вариантов, поставляющихся для стран, не попавших под санкции. NVIDIA уже предупреждала, что новые ограничения способны сказаться на её финансовых результатах.

 Фото: Cerebras

Фото: Cerebras

Вместе с тем сама Cerebras в этом году заключила контракт на $900 млн для строительства девяти ИИ-суперкомпьютеров на чипах WSE-2 для компании G42 из ОАЭ, которую неоднократно обвиняли в связях со структурами, занятых, к примеру, шпионажем в пользу властей ОАЭ. В данном случае компания не усматривает моральной дилеммы.

Cerebras с самого начала приняла решение не вести дел с Китаем, а также обещает соблюдать рекомендации американских госорганов, касающиеся поставок полупроводников на Ближний Восток. Фельдман считает, что компании не должны пытаться обойти ограничения. В частности, компания отслеживала, чтобы её чипы «не поставлялись в одно место на Ближнем Востоке, чтобы вскоре исчезнуть и появиться совсем в другом, там, куда они не должны были бы поставляться». Как заявляют в Cerebras, когда вы пытаетесь обойти правила, вы выглядите «не по-американски».

Конечно, обойти санкционные ограничения пытается не только NVIDIA, но и, например, Intel, которая ранее в этом году представила ухудшенную версию ускорителей Habana Gaudi для продажи на китайском рынке — правда, новейшие ограничения, похоже, не дадут поставлять в Китай и их. Некоторые сигналы о желании обойти санкции поступают и от AMD, хотя нет точных данных, когда начнутся продажи адаптированных под санкции решений и начнутся ли они вообще.

Постоянный URL: http://servernews.ru/1096243
07.09.2023 [21:25], Алексей Степин

Cerebras готова к построению масштабных ИИ-кластеров CS-2 с 163 млн ядер

На прошедшей недавно конференции Hot Chips 2023 компания Cerebras, создатель самого большого в мире ИИ-процессора WSE-2, рассказала о своём видении будущего ИИ-систем. По мнению Cerebras, сфокусировать внимание стоит не столько на наращивании сложности отдельных чипов, сколько на решениях проблем, связанных с масштабированием кластеров.

Свою презентацию Cerebras начала с любопытных фактов: за прошедшие пять лет сложность ИИ-моделей возросла в 40 тыс. раз. И этот темп явно опережает темпы развития чипов-ускорителей. Хотя налицо прогресс и в техпроцессах (5x), и в архитектуре (14x), и во внедрении более эффективных для ИИ форматов данных, но наибольший прирост производительности обеспечивает именно возможность эффективного масштабирования.

 Источник изображений здесь и далее: Cerebras (via ServeTheHome)

Источник изображений здесь и далее: Cerebras (via ServeTheHome)

Однако и этого недостаточно — 600-кратный прирост от кластеризации явно теряется на фоне 40-тыс. усложнения самих нейросетей. А дальнейший рост масштабов ИИ-комплексов в их классическом виде, состоящих из множества «малых» ускорителей, неизбежно приводит к проблемам с организацией памяти, интерконнекта и вычислительных мощностей.

В итоге решение любой задачи в таких системах часто упирается в необходимость тончайшей, но при этом далеко не всегда эффективной оптимизации разделения ресурсов. При этом разные методы масштабирования имеют свои проблемы — узким местом могут оказаться и память, и интерконнект, и конкретный подход к организации кластера.

Cerebras же предлагает совершенно иной подход. Выход компания видит в создании огромных чипов-кластеров, таких, как 7-нм Cerebras WSE-2. Этот чип на сегодня можно назвать самым большим в индустрии: его площадь составляет более 45 тыс. мм2, при этом он содержит 2,6 трлн транзисторов и имеет 850 тыс. ядер, дополненных 40 Гбайт сверхбыстрой памяти. Что интереснее, кластер на базе CS-2 представляется с точки зрения исполняемой модели, как единая система.

Сама по себе сложность WSE-2 и платформы CS-2 на его основе такова, что позволяет запускать модели практически любых размеров, благо весовые коэффициенты чип в себе не хранит, а подгружает извне с помощью подсистемы MemoryX. При этом сама по себе платформа CS-2 допускает и дальнейшее масштабирование: с помощью интерконнекта SwarmX в единый кластер можно объединить до 192 таких машин, что в теории позволит поднять производительность до 8+ Эфлопс.

Подсистема MemoryX включает в себя 12 узлов, за оптимизацию модели в ней отвечают 32-ядерные процессоры, а веса хранятся как в DRAM, так и во флеш-памяти — объёмы этих подсистем составляют 12 Тбайт и 6 Пбайт соответственно. Каждый узел имеет по 2 порта 100GbE — один для закачки данных в CS-2, второй для общения с другими MemoryX в кластере. Оптимизация данных производится на процессорах MemoryX, «мегачипы» CS-2 для этого не используются.

Подсистема интерконнекта SwarmX базируется на 100GbE с поддержкой RoCE DRMA, но имеет ряд особенностей: на каждые четыре системы CS-2 приходтся 12 узлов SwarmX c производительностью интерконнекта 7,2 Тбит/с. Трансляция и редуцирование данных осуществляются с коэффициентом 1:4, причём и здесь используются силы собственных 32-ядерных процессоров, а не ресурсы CS-2. Топологически SwarmX имеет двухслойную конфигурацию spine-leaf и обеспечивает соединение типа all-to-all, при этом каждая CS-2 имеет свой канал с пропускной способностью 1,2 Тбит/с.

Сочетание MemoryX и SwarmX позволяет делать кластеры на базе CS-2 крайне гибкими: размер модели ограничивается лишь ёмкостью узлов MemoryX, а степень параллелизма — их количеством. При этом интерконнект обладает достаточной степенью избыточности, чтобы говорить об отсутствии единых точек отказа.

Таким образом, Cerebras имеет на руках всё необходимое для запуска самых сложных моделей искусственного интеллекта. Уже сравнительно немолодой кластер Andromeda, включающий всего 16 платформ CS-2, способен «натаскивать» за считанные недели нейросети размерностью до 13 млрд параметров. При этом масштабирование по размеру модели не требует серьёзного вмешательства в программный код, в отличие от классического подхода для ускорителей NVIDIA. Фактически для сетей и с 1, и со 100 млрд параметров используется один и тот же код.

Более мощный 64-узловой комплекс Condor Galaxy 1 (CG-1), располагающий 54 млн ИИ-ядер и развивающий до 4 Эфлопс уже доказал, что подход к масштабированию, продвигаемый Cerebras, оправдывает себя. Он успешно обучил первую публичную модель с 3 млрд параметров, причём по возможностям она приближается к моделям с 7 млрд параметров. И это не предел: напомним, в текущем воплощении сочетание подсистем MemoryX и интерконнекта SwarmX допускает объединение в единый кластер до 192 узлов CS-2.

Компания считает, что она полностью готова к наплыву ещё более сложных нейросетей, а предлагаемая ей архитектура в явном виде лишена многих узких мест, свойственных традиционным GPU-архитектурам. Насколько успешным окажется такой подход в более отдалённой перспективе, покажет время.

Постоянный URL: http://servernews.ru/1092699
21.07.2023 [15:35], Сергей Карасёв

NVIDIA, подвинься: Cerebras представила 4-Эфлопс ИИ-суперкомпьютер Condor Galaxy 1 и намерена построить ещё восемь таких же

Компания Cerebras Systems анонсировала суперкомпьютер Condor Galaxy 1 (CG-1), предназначенный для решения ресурсоёмких задач с применением ИИ. Это одна из первых действительно крупных машин на базе уникальных чипов Cerebras. В проекте стоимостью $100 млн приняла участие холдинговая группа G42 из ОАЭ, которая занимается технологиями ИИ и облачными вычислениями. G42 является основным заказчиком комплекса.

В текущем виде комплекс CG-1, расположенный в Санта-Кларе (Калифорния, США), объединяет 32 системы Cerebras CS-2 и обеспечивает производительность на уровне 2 Эфлопс (FP16). В IV квартале ткущего года будут добавлены ещё 32 системы Cerebras CS-2, что позволит довести быстродействие до 4 Эфлопс (FP16). Ожидаемый уровень энергопотребления составит порядка 1,5 МВт или более.

 Источник изображений: Cerebras (via ServeTheHome)

Источник изображений: Cerebras (via ServeTheHome)

В системах Cerebras CS-2 применяются гигантские чипы Wafer-Scale Engine 2 (WSE-2), насчитывающие 2,6 трлн транзисторов. Такие чипы имеют 850 тыс. тензорных ядер и несут на борту 40 Гбайт памяти SRAM. Системы выполнены в формате 15 RU и укомплектованы шестью блоками питания мощностью 4 кВт каждый. Задействована технология жидкостного охлаждения. Отдельно отмечается, что программный стек позволит без проблем и существенных модификаций кода работать с ИИ-моделями.

После ввода в строй второй очереди комплекс CG-1 суммарно получит 54,4 млн ИИ-ядер, 2,56 Тбайт SRAM и внутренний интерконнект со скоростью 388 Тбит/с. Их дополнят 72 704 ядра AMD EPYC Milan и 82 Тбайт памяти для хранения параметров. По словам создателей, мощностей суперкомпьютера хватит для обучения модели с 600 млрд параметров и на очередях длиной до 50 тыс. токенов. При этом производительность масштабируется практически линейно.

Cerebras и G42 будут предоставлять доступ к CG-1 по облачной схеме, что позволит заказчикам использовать ресурсы ИИ-суперкомпьютера без необходимости управлять моделями или распределять их по узлам и ускорителям. CG-1 — первый из трёх ИИ-суперкомпьютеров нового поколения. В I полугодии 2024 года будут построены комплексы CG-2 и CG-3, полностью аналогичные CG-1, которые будут объединены в распределённый ИИ-кластер. А к концу следующего года у Cerebras будет уже девять систем CG.

Для Cerebras это означает, что компания более не является стартапом, поскольку в её решения заказчики поверили и без участия в индустриальных тестах вроде MLPerf. Кроме того, теперь компания является не просто очередным производителем «железа», а предоставляет услуги, которые и помогут ей заработать в будущем.

Постоянный URL: http://servernews.ru/1090321
29.03.2023 [22:27], Владимир Мироненко

Cerebras выпустила семь GPT-моделей для генеративного ИИ под открытой лицензией, обучив их на собственных чипах

Американский производитель ИИ-комплексов Cerebras Systems объявил о выходе 7 больших языковых моделей (LLM) на базе технологии Generative Pre-trained Transformer (GPT) для генеративного ИИ. Это первые публичные LLM, которые прошли обучение с помощью систем CS-2 в суперкластере Cerebras Andromeda на базе фирменных ИИ-чипов Cerebras WSE-2. Другими словами, это одни из первых больших языковых моделей, которые были обучены без использования систем на основе ускорителей, в частности, NVIDIA.

Серия из семи открытых моделей GPT со 111, 256, 590 млн, а также 1,3, 2,7, 6,7 и 13 млрпд параметров соответственно доступны на GitHub и Hugging Face. Обучение таких моделей обычно занимает много месяцев, но Cerebras утверждает, что ей удалось справиться всего за несколько недель благодаря Andromeda. Более того, Cerebas удалось снизить стоимость обучения, а также упростить масштабирование без модификации кода и самой модели, что часто требуется при обучении с использованием кластеров традиционных ускорителей. При этом энергоэффективность всего процесса Cerebras смогла повысить.

 Источник изображения: Cerebras Systems

Источник изображения: Cerebras Systems

Cerebras отметила, что не только предлагает модели, но и инструкции по их обучению под лицензией Apache 2.0. «Мы считаем, что для того, чтобы LLM были открытой и доступной технологией, важно иметь доступ к современным моделям, которые являются открытыми, воспроизводимыми и бесплатными как для исследовательских, так и для коммерческих приложений», — заявила Cerebras.

 Источник изображения: Cerebras Systems

Источник изображения: Cerebras Systems

Компания заявила, что это первый случай, когда весь набор моделей GPT, обученных с использованием самых современных методов повышения эффективности, стал общедоступным. Поскольку большие языковые модели Cerebras имеют открытый исходный код, их можно использовать как в исследовательских, так и в коммерческих целях. А предварительно обученную модель можно с минимум затрат дообучить под конкретную задачу на пользовательских данных.

 Источник изображения: Cerebras Systems

Источник изображения: Cerebras Systems

Cerebras отметила, что быстрый рост генеративного ИИ при лидерстве ChatGPT от OpenAI спровоцировал обострение состязания среди производителей ИИ-оборудования для ИИ, взявшихся за создание более мощных и специализированных чипов. Хотя многие из них обещали создать альтернативу ускорителям NVIDIA, пока никому из них не удалось продемонстрировать способность обучать крупномасштабные модели и желание раскрывать наработки под открытыми лицензиями.

По словам Cerebras, в связи с конкуренцией доступ к ИИ становится все более закрытым. Так, GPT4 была выпущена без детальной информации об архитектуре модели, параметрах, данных, оборудовании и т.д. Компании создают большие модели с использованием закрытых наборов данных и предлагают выходные данные моделей только через доступ к API.

Постоянный URL: http://servernews.ru/1084220
Система Orphus