Материалы по тегу: cerebras

29.11.2023 [01:21], Руслан Авдеев

Cerebras, критиковавшая NVIDIA за сотрудничество с Китаем, сама оказалась связана с компанией, ведущей дела с Пекином

Хотя стартап Cerebras, занимающийся разработкой чипов, раскритиковал NVIDIA за попытки обойти санкционные ограничения в отношении Китая и призвал соблюдать не букву, но дух американского закона, у компании, похоже, нашлись свои скелеты в шкафу. Как сообщает The Register, сейчас в США расследуют деятельность клиента Cerebras — группы G42, возможно, помогавшей Поднебесной обходить санкционные ограничения.

Американские спецслужбы подозревают, что базирующаяся в ОАЭ многопрофильная компания G42 поставляет в Китай передовые технологии. Для своих ИИ-исследований компания обратилась к Cerebras с целью постройки суперкомпьютерного кластера Condor Galaxy за $100 млн, а всего стартап намерен построить девять подобных объектов на $900 млн. При этом узлы кластера используют разработанные Cerebras чипы WSE-2, подходящие для обучения ИИ-систем.

 Источник изображения:  Arthur Wang/unsplash.com

Источник изображения: Arthur Wang/unsplash.com

Как показывают предварительные результаты расследования американских журналистов, властей и спецслужб, G42 пытается сотрудничать с Пекином и работает с китайскими компаниями вроде Huawei, давно находящимися под санкциями. В самой G42 утверждают, что принимают все меры для того, чтобы соблюдать американские ограничения. При этом, по данным журналистов, G42 считают прокси-компанией для работы в интересах КНР, помогающей Пекину получать вычислительные ресурсы и подсанкционные технологии.

По словам главы Cerebras Эндрю Фельдмана (Andrew Feldman), его компания точно не будет вести бизнес с Китаем. Бизнесмен попал в неловкую ситуацию после того, как появилась информация о тесных связях G42 с Пекином. На запрос журналистов в Cerebras заявили, что кластеры Condor Galaxy находятся в США, а G42 получает к ним облачный доступ, так что любая активность контролируется и соответствует американским законам — государства-противники не имеют прямого доступа к ИИ-системам. Фельдман якобы не знал о сомнительном статусе G42, а в стартапе подчеркнули, что не комментируют слухи.

Бюро промышленности и безопасности США уже обратилось к поставщикам облачных инфраструктур для консультаций о целесообразности дополнительных ограничений доступа к их услугам из некоторых стран. В частности, бюро интересует, как операторы намерены выявлять разработчиков ИИ-моделей, вызывающих обеспокоеность властей и что можно предпринять для устранения угроз. Кроме того, президент США предложил новые правила, согласно которым облакам потребуется докладывать о деятельности иностранцев, связанной с обучением больших языковых моделей (LLM).

Постоянный URL: http://servernews.ru/1096627
21.11.2023 [00:34], Руслан Авдеев

Cerebras раскритиковала NVIDIA за «вооружение» Китая ИИ-ускорителями

Глава Cerebras Эндрю Фельдман (Andrew Feldman) подверг критике NVIDIA за попытки компании уложиться в нормы, установленные новыми экспортными ограничениями США в отношении Китая, чтобы продолжить поставки ИИ-ускорителей в Поднебесную. Как передаёт The Register, такое поведение Фельдман назвал «неамериканским» и сравнил техногиганта с торговцем ИИ-оружием.

По словам Фельдмана, NVIDIA буквально единолично «вооружила» Китай, поставив огромное количество ускорителей. Хотя компания действовала в рамках закона, это не снимает с неё моральной ответственности. Сама Cerebras тоже разрабатывает чипы для систем машинного обучения и других ресурсоёмких задач, но намерена соблюдать «дух, а не букву» введённых в октябре США новых правил, ограничивающих поставки ИИ-оборудования в США.

Правила и без того фактически отрезают Пекин от поставок разработанных в США передовых ускорителей, но уже ходят слухи, что NVIDIA готовит новые продукты для того, чтобы обойти и эти ограничения. Раньше она уже выпустила «ухудшенные» A800 и H800, теперь тоже попавшие под ограничения. Неанонсированные чипы H20, L20 и L2 якобы представляют собой менее производительные версии более быстрых вариантов, поставляющихся для стран, не попавших под санкции. NVIDIA уже предупреждала, что новые ограничения способны сказаться на её финансовых результатах.

 Фото: Cerebras

Фото: Cerebras

Вместе с тем сама Cerebras в этом году заключила контракт на $900 млн для строительства девяти ИИ-суперкомпьютеров на чипах WSE-2 для компании G42 из ОАЭ, которую неоднократно обвиняли в связях со структурами, занятых, к примеру, шпионажем в пользу властей ОАЭ. В данном случае компания не усматривает моральной дилеммы.

Cerebras с самого начала приняла решение не вести дел с Китаем, а также обещает соблюдать рекомендации американских госорганов, касающиеся поставок полупроводников на Ближний Восток. Фельдман считает, что компании не должны пытаться обойти ограничения. В частности, компания отслеживала, чтобы её чипы «не поставлялись в одно место на Ближнем Востоке, чтобы вскоре исчезнуть и появиться совсем в другом, там, куда они не должны были бы поставляться». Как заявляют в Cerebras, когда вы пытаетесь обойти правила, вы выглядите «не по-американски».

Конечно, обойти санкционные ограничения пытается не только NVIDIA, но и, например, Intel, которая ранее в этом году представила ухудшенную версию ускорителей Habana Gaudi для продажи на китайском рынке — правда, новейшие ограничения, похоже, не дадут поставлять в Китай и их. Некоторые сигналы о желании обойти санкции поступают и от AMD, хотя нет точных данных, когда начнутся продажи адаптированных под санкции решений и начнутся ли они вообще.

Постоянный URL: http://servernews.ru/1096243
07.09.2023 [21:25], Алексей Степин

Cerebras готова к построению масштабных ИИ-кластеров CS-2 с 163 млн ядер

На прошедшей недавно конференции Hot Chips 2023 компания Cerebras, создатель самого большого в мире ИИ-процессора WSE-2, рассказала о своём видении будущего ИИ-систем. По мнению Cerebras, сфокусировать внимание стоит не столько на наращивании сложности отдельных чипов, сколько на решениях проблем, связанных с масштабированием кластеров.

Свою презентацию Cerebras начала с любопытных фактов: за прошедшие пять лет сложность ИИ-моделей возросла в 40 тыс. раз. И этот темп явно опережает темпы развития чипов-ускорителей. Хотя налицо прогресс и в техпроцессах (5x), и в архитектуре (14x), и во внедрении более эффективных для ИИ форматов данных, но наибольший прирост производительности обеспечивает именно возможность эффективного масштабирования.

 Источник изображений здесь и далее: Cerebras (via ServeTheHome)

Источник изображений здесь и далее: Cerebras (via ServeTheHome)

Однако и этого недостаточно — 600-кратный прирост от кластеризации явно теряется на фоне 40-тыс. усложнения самих нейросетей. А дальнейший рост масштабов ИИ-комплексов в их классическом виде, состоящих из множества «малых» ускорителей, неизбежно приводит к проблемам с организацией памяти, интерконнекта и вычислительных мощностей.

В итоге решение любой задачи в таких системах часто упирается в необходимость тончайшей, но при этом далеко не всегда эффективной оптимизации разделения ресурсов. При этом разные методы масштабирования имеют свои проблемы — узким местом могут оказаться и память, и интерконнект, и конкретный подход к организации кластера.

Cerebras же предлагает совершенно иной подход. Выход компания видит в создании огромных чипов-кластеров, таких, как 7-нм Cerebras WSE-2. Этот чип на сегодня можно назвать самым большим в индустрии: его площадь составляет более 45 тыс. мм2, при этом он содержит 2,6 трлн транзисторов и имеет 850 тыс. ядер, дополненных 40 Гбайт сверхбыстрой памяти. Что интереснее, кластер на базе CS-2 представляется с точки зрения исполняемой модели, как единая система.

Сама по себе сложность WSE-2 и платформы CS-2 на его основе такова, что позволяет запускать модели практически любых размеров, благо весовые коэффициенты чип в себе не хранит, а подгружает извне с помощью подсистемы MemoryX. При этом сама по себе платформа CS-2 допускает и дальнейшее масштабирование: с помощью интерконнекта SwarmX в единый кластер можно объединить до 192 таких машин, что в теории позволит поднять производительность до 8+ Эфлопс.

Подсистема MemoryX включает в себя 12 узлов, за оптимизацию модели в ней отвечают 32-ядерные процессоры, а веса хранятся как в DRAM, так и во флеш-памяти — объёмы этих подсистем составляют 12 Тбайт и 6 Пбайт соответственно. Каждый узел имеет по 2 порта 100GbE — один для закачки данных в CS-2, второй для общения с другими MemoryX в кластере. Оптимизация данных производится на процессорах MemoryX, «мегачипы» CS-2 для этого не используются.

Подсистема интерконнекта SwarmX базируется на 100GbE с поддержкой RoCE DRMA, но имеет ряд особенностей: на каждые четыре системы CS-2 приходтся 12 узлов SwarmX c производительностью интерконнекта 7,2 Тбит/с. Трансляция и редуцирование данных осуществляются с коэффициентом 1:4, причём и здесь используются силы собственных 32-ядерных процессоров, а не ресурсы CS-2. Топологически SwarmX имеет двухслойную конфигурацию spine-leaf и обеспечивает соединение типа all-to-all, при этом каждая CS-2 имеет свой канал с пропускной способностью 1,2 Тбит/с.

Сочетание MemoryX и SwarmX позволяет делать кластеры на базе CS-2 крайне гибкими: размер модели ограничивается лишь ёмкостью узлов MemoryX, а степень параллелизма — их количеством. При этом интерконнект обладает достаточной степенью избыточности, чтобы говорить об отсутствии единых точек отказа.

Таким образом, Cerebras имеет на руках всё необходимое для запуска самых сложных моделей искусственного интеллекта. Уже сравнительно немолодой кластер Andromeda, включающий всего 16 платформ CS-2, способен «натаскивать» за считанные недели нейросети размерностью до 13 млрд параметров. При этом масштабирование по размеру модели не требует серьёзного вмешательства в программный код, в отличие от классического подхода для ускорителей NVIDIA. Фактически для сетей и с 1, и со 100 млрд параметров используется один и тот же код.

Более мощный 64-узловой комплекс Condor Galaxy 1 (CG-1), располагающий 54 млн ИИ-ядер и развивающий до 4 Эфлопс уже доказал, что подход к масштабированию, продвигаемый Cerebras, оправдывает себя. Он успешно обучил первую публичную модель с 3 млрд параметров, причём по возможностям она приближается к моделям с 7 млрд параметров. И это не предел: напомним, в текущем воплощении сочетание подсистем MemoryX и интерконнекта SwarmX допускает объединение в единый кластер до 192 узлов CS-2.

Компания считает, что она полностью готова к наплыву ещё более сложных нейросетей, а предлагаемая ей архитектура в явном виде лишена многих узких мест, свойственных традиционным GPU-архитектурам. Насколько успешным окажется такой подход в более отдалённой перспективе, покажет время.

Постоянный URL: http://servernews.ru/1092699
21.07.2023 [15:35], Сергей Карасёв

NVIDIA, подвинься: Cerebras представила 4-Эфлопс ИИ-суперкомпьютер Condor Galaxy 1 и намерена построить ещё восемь таких же

Компания Cerebras Systems анонсировала суперкомпьютер Condor Galaxy 1 (CG-1), предназначенный для решения ресурсоёмких задач с применением ИИ. Это одна из первых действительно крупных машин на базе уникальных чипов Cerebras. В проекте стоимостью $100 млн приняла участие холдинговая группа G42 из ОАЭ, которая занимается технологиями ИИ и облачными вычислениями. G42 является основным заказчиком комплекса.

В текущем виде комплекс CG-1, расположенный в Санта-Кларе (Калифорния, США), объединяет 32 системы Cerebras CS-2 и обеспечивает производительность на уровне 2 Эфлопс (FP16). В IV квартале ткущего года будут добавлены ещё 32 системы Cerebras CS-2, что позволит довести быстродействие до 4 Эфлопс (FP16). Ожидаемый уровень энергопотребления составит порядка 1,5 МВт или более.

 Источник изображений: Cerebras (via ServeTheHome)

Источник изображений: Cerebras (via ServeTheHome)

В системах Cerebras CS-2 применяются гигантские чипы Wafer-Scale Engine 2 (WSE-2), насчитывающие 2,6 трлн транзисторов. Такие чипы имеют 850 тыс. тензорных ядер и несут на борту 40 Гбайт памяти SRAM. Системы выполнены в формате 15 RU и укомплектованы шестью блоками питания мощностью 4 кВт каждый. Задействована технология жидкостного охлаждения. Отдельно отмечается, что программный стек позволит без проблем и существенных модификаций кода работать с ИИ-моделями.

После ввода в строй второй очереди комплекс CG-1 суммарно получит 54,4 млн ИИ-ядер, 2,56 Тбайт SRAM и внутренний интерконнект со скоростью 388 Тбит/с. Их дополнят 72 704 ядра AMD EPYC Milan и 82 Тбайт памяти для хранения параметров. По словам создателей, мощностей суперкомпьютера хватит для обучения модели с 600 млрд параметров и на очередях длиной до 50 тыс. токенов. При этом производительность масштабируется практически линейно.

Cerebras и G42 будут предоставлять доступ к CG-1 по облачной схеме, что позволит заказчикам использовать ресурсы ИИ-суперкомпьютера без необходимости управлять моделями или распределять их по узлам и ускорителям. CG-1 — первый из трёх ИИ-суперкомпьютеров нового поколения. В I полугодии 2024 года будут построены комплексы CG-2 и CG-3, полностью аналогичные CG-1, которые будут объединены в распределённый ИИ-кластер. А к концу следующего года у Cerebras будет уже девять систем CG.

Для Cerebras это означает, что компания более не является стартапом, поскольку в её решения заказчики поверили и без участия в индустриальных тестах вроде MLPerf. Кроме того, теперь компания является не просто очередным производителем «железа», а предоставляет услуги, которые и помогут ей заработать в будущем.

Постоянный URL: http://servernews.ru/1090321
28.08.2021 [00:16], Владимир Агапов

Кластер суперчипов Cerebras WSE-2 позволит тренировать ИИ-модели, сопоставимые по масштабу с человеческим мозгом

В последние годы сложность ИИ-моделей удваивается в среднем каждые два месяца, и пока что эта тенденция сохраняется. Всего три года назад Google обучила «скромную» модель BERT с 340 млн параметров за 9 Пфлоп-дней. В 2020 году на обучение модели Micrsofot MSFT-1T с 1 трлн параметров понадобилось уже порядка 25-30 тыс. Пфлоп-дней. Процессорам и GPU общего назначения всё труднее управиться с такими задачами, поэтому разработкой специализированных ускорителей занимается целый ряд компаний: Google, Groq, Graphcore, SambaNova, Enflame и др.

Особо выделятся компания Cerebras, избравшая особый путь масштабирования вычислительной мощности. Вместо того, чтобы печатать десятки чипов на большой пластине кремния, вырезать их из пластины, а затем соединять друг с другом — компания разработала в 2019 г. гигантский чип Wafer-Scale Engine 1 (WSE-1), занимающий практически всю пластину. 400 тыс. ядер, выполненных по 16-нм техпроцессу, потребляют 15 кВт, но в ряде задач они оказываются в сотни раз быстрее 450-кВт суперкомпьютера на базе ускорителей NVIDIA.

В этом году компания выпустила второе поколение этих чипов — WSE-2, в котором благодаря переходу на 7-нм техпроцесс удалось повысить число тензорных ядер до 850 тыс., а объём L2-кеша довести до 40 Гбайт, что примерно в 1000 раз больше чем у любого GPU. Естественно, такой подход к производству понижает выход годных пластин и резко повышает себестоимость изделий, но Cerebras в сотрудничестве с TSMC удалось частично снизить остроту этой проблемы за счёт заложенной в конструкцию WSE избыточности.

Благодаря идентичности всех ядер, даже при неисправности некоторых их них, изделие в целом сохраняет работоспособность. Тем не менее, себестоимость одной 7-нм 300-мм пластины составляет несколько тысяч долларов, в то время как стоимость чипа WSE оценивается в $2 млн. Зато система CS-1, построенная на таком процессоре, занимает всего треть стойки, имея при этом производительность минимум на порядок превышающую самые производительные GPU. Одна из причин такой разницы — это большой объём быстрой набортной памяти и скорость обмена данными между ядрами.

Тем не менее, теперь далеко не каждая модель способна «поместиться» в один чип WSE, поэтому, по словам генерального директора Cerebras Эндрю Фельдмана (Andrew Feldman), сейчас в фокусе внимания компании — построение эффективных систем, составленных из многих чипов WSE. Скорость роста сложности моделей превышает возможности увеличения вычислительной мощности путём добавления новых ядер и памяти на пластину, поскольку это приводит к чрезмерному удорожанию и так недешёвой системы.

Инженеры компании рассматривают дезагрегацию как единственный способ обеспечить необходимый уровень производительности и масштабируемости. Такой подход подразумевает разделение памяти и вычислительных блоков для того, чтобы иметь возможность масштабировать их независимо друг от друга — параметры модели помещаются в отдельное хранилище, а сама модель может быть разнесена на несколько вычислительных узлов CS, объединённых в кластер.

На Hot Chips 33 компания представила особое хранилище под названием MemoryX, сочетающее DRAM и флеш-память суммарной емкостью 2,4 Пбайт, которое позволяет хранить до 120 трлн параметров. Это, по оценкам компании, делает возможным построение моделей близких по масштабу к человеческому мозгу, обладающему порядка 80 млрд. нейронов и 100 трлн. связей между ними. К слову, флеш-память размером с целую 300-мм пластину разрабатывает ещё и Kioxia.

Для обеспечения масштабирования как на уровне WSE, так и уровне CS-кластера, Cerebras разработала технологию потоковой передачи весовых коэффициентов Weight Streaming. С помощью неё слой активации сверхкрупных моделей (которые скоро станут нормой) может храниться на WSE, а поток параметров поступает извне. Дезагрегация вычислений и хранения параметров устраняет проблемы задержки и узости пропускной способности памяти, с которыми сталкиваются большие кластеры процессоров.

Это открывает широкие возможности независимого масштабирования размера и скорости кластера, позволяя хранить триллионы весов WSE-2 в MemoryX и использовать от 1 до 192 CS-2 без изменения ПО. В традиционных системах по мере добавления в кластер большего количества вычислительных узлов каждый из них вносит всё меньший вклад в решение задачи. Cerebras разработала интерконнект SwarmX, позволяющий подключать до 163 млн вычислительных ядер, сохраняя при этом линейность прироста производительности.

Также, компания уделила внимание разрежённости, то есть исключения части незначимых для конечного результата весов. Исследования показали, что должная оптимизации модели позволяет достичь 10-кратного увеличения производительности при сохранении точности вычислений. В CS-2 доступна технология динамического изменения разрежённости Selectable Sparsity, позволяющая пользователям выбирать необходимый уровень «ужатия» модели для сокращение времени вычислений.

«Крупные сети, такие как GPT-3, уже изменили отрасль машинной обработки естественного языка, сделав возможным то, что раньше было невозможно и представить. Индустрия перешла к моделям с 1 трлн параметров, а мы расширяем эту границу на два порядка, создавая нейронные сети со 120 трлн параметров, сравнимую по масштабу с мозгом» — отметил Фельдман.

Постоянный URL: http://servernews.ru/1047735
09.06.2020 [19:49], Юрий Поздеев

Суперкомпьютер Neocortex: 800 тыс. ядер Cerebras для ИИ

Питтсбургский суперкомпьютерный центр (PSC) получит $5 млн от Национального научного фонда на создание суперкомпьютера нового типа Neocortex, который объединяет ИИ-серверы Cerebras CS-1 и HPE SuperDome Flex в единую систему с общей памятью. Планируется, что решение будет введено в эксплуатацию до конца 2020 года.

Каждый сервер Cerebras CS-1 имеет процессор Cerebras Wafer Scale Engine (WSE), который содержит 400 000 ядер, оптимизированных для работы с ИИ (46 225 мм2, 1,2 трлн транзисторов). В паре с ними работает HPE SuperDome Flex, который используется для предварительной обработки информации и постобработки после Cerebras. SuperDome Flex представлен в максимальной комплектации, то есть с 32 процессорами Intel Xeon, 24 Тбайт оперативной памяти, 205 Тбайт флеш-памяти и 24 интерфейсными картами.

Каждый сервер Cerebras CS-1 подключается к SuperDome Flex через 12 каналов со скоростью 100 Гбит/с каждый. Процессор WSE способен обрабатывать 9 Пбайт данных в секунду, что, по подсчетам Nystrom, эквивалентно примерно миллиону фильмов в HD-качестве. Характеристики решения действительно впечатляют!

 Neocortex назван в честь области мозга, отвечающей за функции высокого порядка, включая когнитивные способности, сновидения и формирование речи

Neocortex назван в честь области мозга, отвечающей за функции высокого порядка, включая когнитивные способности, сновидения и формирование речи

Архитектура решения строилась таким образом, чтобы не пришлось разбивать вычислительные блоки на множество узлов — это позволило снизить задержки в обработке информации и ускорить обучение моделей ИИ. Cerebras CS-1 разрабатывался специально для ИИ, поэтому он имеет преимущества перед серверами с графическими ускорителями, которые хорошо справляются с матричными операциями, но имеют многие конструктивные ограничения.

По заявлениям Neocortex, сервер CS-1 будет на несколько порядков мощнее системы PSC Bridges-AI. Один сервер Neocortex CS-1 будет эквивалентен примерно 800-1500 серверов с традиционной архитектурой с использованием графических ускорителей. Задачи, в которых Neocortex покажет себя максимально эффективно относятся к классу нейронных сетей DCIGN (deep convolutional inverse graphics networks) и RNN (recurrent neural networks). Если говорить простыми словами, то это более точное прогнозирование погоды, анализ геномов, поиск новых материалов и разработка новых лекарств.

PSC, помимо Neocortex, запускает еще и новое поколение системы Bridges-2, которое будет развернуто осенью 2020 года. Таким образом, до конца этого года будут введены в эксплуатацию два мощных суперкомпьютера для ИИ. Neocortex и Bridges-2 будут поддерживать самые популярные фреймворки машинного обучения, что позволит создать гибкую и мощную экосистему для ИИ, анализа данных, моделирования и симуляции.

До 90% машинного времени Neocortex будет выделяться через XSEDE (Extreme Science and Engineering Discovery Environment), финансируемую NSF организацию, которая координирует совместное использование передовых цифровых услуг, включая суперкомпьютеры и ресурсы для визуализации и анализа данных, с исследователями на национальном уровне.

Постоянный URL: http://servernews.ru/1013005
Система Orphus