Материалы по тегу: ускоритель

09.08.2023 [18:00], Алексей Степин

NVIDIA анонсировала L40S —  новый универсальный ускоритель на базе Ada Lovelace

Корпорация NVIDIA обновила серию укорителей L40, представленных осенью прошлого года в рамках платформы OVX. Новинка под названием NVIDIA L40S позиционируется как универсальный ускоритель в форм-факторе двухслотовой FHFL-карты расширения с интерфейсом PCIe 4.0 x16, пригодный для решения практически любых задач.

Во многом L40S повторяет L40 — она также базируется на архитектуре Ada Lovelace, оснащена графическим процессором AD102, дополненным 48 Гбайт памяти GDDR6 ECC (384 бит, 864 Гбайт/с). В составе ускорителя работают 18176 ядер CUDA, 142 RT-ядра третьего поколения и 568 тензорных ядер четвёртого поколения. То есть в этом отличий от L40 нет. Но значение TDP у новинки выше на 50 Вт и составляет 350 Вт, она все ещё имеет пассивное охлаждение.

 Источник изображений здесь и далее: NVIDIA

Источник изображений здесь и далее: NVIDIA

При этом L40S умудряется быть практически вдвое быстрее L40 во всех форматах вычислений с использованием тензорных ядер, а вот без Tensor Core её FP32-производительность выросла минимально — с 90,5 до 91,6 Тфлопс. Поддержкой NVLink-мостика новинка так и не обзавелась. L40S оснащён четырьмя портами DP 1.4a с поддержкой NVIDIA Mosaic и Quadro Sync. Также доступны профили vGPU для vDWS, GRID vApps/vPC, vCS. Имеется поддержка Secure Boot с Root of Trust и соответствие стандарту NEBS Level 3.

Таким образом, новинка подходит не только в качестве ускорителя для обучения ИИ-моделей или инференс-систем, но и в качестве основы для систем рендеринга 3D-графики, визуализации или создания и запуска приложений для мета-вселенных. NVIDIA отмечает, что в ИИ-задачах L40S опережает A100 в 1,2–1,7 раза, а наличие трёх движков NVENC/NVDEC с поддержкой AV1 позволяет использовать новый ускоритель в качестве эффективной платформы транскодирования видео.

Постоянный URL: http://servernews.ru/1091250
22.03.2023 [22:02], Алексей Степин

AMD и NVIDIA победили: NEC останавливает разработку уникальных векторных процессоров SX-Aurora

Японская компания NEC была одной из немногих, отстаивавших собственный уникальный путь в сфере развития вычислительных технологий со своими векторными процессорами SX-Aurora. Хотя данное направление до недавних пор активно развивалось, компания, похоже, не выдержала давления со стороны NVIDIA и AMD и объявила о прекращении разработок новых решений в серии Aurora.

Работы над усовершенствованием векторной архитектуры NEC продолжались до конца прошлого года, когда компания объявила о подготовке новых вычислительных узлов SX-Aurora TSUBASA C401-8 на базе ускорителей с 16 блоками Vector Engine 3.0 и 96 Гбайт интегрированной памяти HBM2. И хотя в августе этого года в Научном центре Университета Тохоку будет запущен новый суперкомпьютер на их основе, новых разработок в этой сфере не будет.

Вычислительный модуль SX-Aurora TSUBASA C401-8. Источник изображений здесь и далее: NEC

Как отметил Сатоши Мацуока (Satoshi Matsuoka), глава крупнейшего в Японии суперкомпьютерного центра RIKEN, где был создан суперкомпьютер Fugaku, NEC неслучайно объявила об отказе от разработки нового поколения процессоров SX-Aurora. Хотя в целях компании значилось 10-кратное повышение энергоэффективности, теперь NEC считает, что эта цель может быть достигнута с использованием стандартных коммерческих ускорителей.

Главной причиной называется появление решений AMD и NVIDIA, на голову превосходящих все наработки NEC. В частности, упоминается AMD Instinct MI300. При этом отмечено, что это решение «похоронило» бы даже новое поколение SX-Aurora, когда речь заходит о ПСП. Целью NEC был показатель 2+ Тбайт/с, в то время как новинка AMD, располагая памятью HBM3 с 8192-бит шиной, может обеспечить 6,8 Тбайт/с.

 Планы NEC по развитию VE-архитектуры. Похоже, им уже не суждено сбыться

Планы NEC по развитию VE-архитектуры. Похоже, им уже не суждено сбыться

Также «естественным врагом» SX-Aurora является NVIDIA Grace Hopper с его мощной процессорной частью и развитой инфраструктурой NVLink, демонстрирующий к тому же выдающуюся энергоэффективность. Примечательно, что оба продукта от AMD и NVIDIA являются APU, то есть гибридными чипами, объединяющими ускорители и CPU собственной разработки, а также быструю память.

Финансовый кризис 2009 года ударил по разработкам NEC в области процессоростроения сильно, но ситуацию тогда спасла общая незрелость рынка GPGPU и технологии HBM. Сейчас на это надеяться нельзя, да и ситуация с точки зрения программной экосистемы в мире HPC говорит не в пользу NEC. По всей видимости, прямо на наших глазах ещё одна уникальная вычислительная архитектура становится достоянием истории.

При этом в Японии пока что сохраняется ещё одна уникальная отечественная архитектура — PEZY-SC. Arm-процессоры Fujitsu A64FX, ставшие основой Fugaku, тоже достаточно уникальны, однако их наследники в лице MONAKA переориентированы на более массовый сегмент. Таким образом, собственные массовые HPC-решения сейчас есть только у Китая, которому новейшие американские и британские ускорители достанутся в кастрированном виде.

Постоянный URL: http://servernews.ru/1083855
22.03.2023 [20:32], Алексей Степин

Экспортный китайский вариант NVIDIA H100 получил модельный номер H800

В связи с санкционными ограничениями некоторые разновидности сложных микроэлектронных чипов запрещено экспортировать в Китайскую Народную Республику. Однако производители находят выход. В частности, компания NVIDIA анонсировала экспортный вариант ускорителя H100, не нарушающий никаких санкций. Модельный номер у такого варианта изменён на H800.

Введённые правительством США в 2022 году санкции сделали «невыездными» два наиболее продвинутых продукта NVIDIA: A100 и H100. Такие процессоры сегодня являются основой наиболее динамично развивающейся вычислительной отрасли — нейросетевой. Именно на кластерах из таких ускорителей «натаскивают» мощные нейросети вроде ChatGPT и подобных.

 Ускоритель Hopper H100 в SXM-исполнении. Источник изображений здесь и далее: NVIDIA

Ускоритель Hopper H100 в SXM-исполнении. Источник изображений здесь и далее: NVIDIA

Ещё осенью прошлого года NVIDIA анонсировала A800 — экспортный вариант A100, не попадающий под ограничения за счёт некоторого снижения пропускной способности NVLink, с 600 до 400 Гбайт/с. Сейчас пришло время архитектуры Hopper, которая запущена в массовое производство. По аналогии с флагманом Ampere модернизированный чип получил модельный номер H800. Ограничения в нём реализованы схожим образом: как известно, NVLink в H100 имеет производительность 900 Гбайт/с в базовом SXM-варианте.

 H100 также существует в PCIe-варианте

H100 также существует в PCIe-варианте

Версия H800 использует примерно половину этого потенциала, что, впрочем, не делает её в Китае менее популярной: новинка уже используется китайскими облачными гигантами, такими, как Alibaba, Baidu и Tencent. Есть ли у H800 другие отличия от H100, не говорится — NVIDIA пока отказывается предоставлять такую информацию. Достоверно известно лишь то, что они полностью соответствуют всем санкционным ограничениям. Интересно, появится ли в будущем вариант H800 NVL на базе NVIDIA H100 NVL.

Постоянный URL: http://servernews.ru/1083837
21.03.2023 [19:45], Игорь Осколков

Толстый и тонкий: NVIDIA представила самый маленький и самый большой ИИ-ускорители L4 и H100 NVL

На весенней конференции GTC 2023 компания NVIDIA представила два новых ИИ-ускорителя, ориентированных на инференес: неприличной большой H100 NVL, фактически являющийся парой обновлённых ускорителей H100 в формате PCIe-карты, и крошечный L4, идущий на смену T4.

 Изображения: NVIDIA

Изображения: NVIDIA

NVIDIA H100 NVL действительно выглядит как пара H100, соединённых мостиками NVLink. Более того, с точки зрения ОС они выглядят как пара независимых ускорителей, однако ПО воспринимает их как единое целое, а обмен данными между двумя картам идёт в первую очередь по мостикам NVLink (600 Гбайт/с). Новинка создана в первую очередь для исполнения больших языковых ИИ-моделей, в том числе семейства GPT, а не для их обучения.

 NVIDIA H100 NVL

NVIDIA H100 NVL

Однако аппаратно это всё же не просто пара обычных H100 PCIe. По уровню заявленной производительности NVL-вариант вдвое быстрее одиночного ускорителя H100 SXM, а не PCIe — 3958 и 7916 Тфлопс в разреженных (в обычных показатели вдвое меньше) FP16- и FP8-вычислениях на тензорных ядрах соответственно, что в 2,6 раз больше, чем у H100 PCIe. Кроме того, NVL-вариант получил сразу 188 Гбайт HBM3-памяти с суммарной пропускной способностью 7,8 Тбайт/с.

NVIDIA утверждает, что форм-фактор H100 NVL позволит задействовать новинку большему числу пользователей, хотя четыре слота и TDP до 800 Вт подойдут далеко не каждой платформе. NVIDIA H100 NVL станет доступна во второй половине текущего года. А вот ещё одну новинку, NVIDIA L4 на базе Ada, в ближайшее время можно будет опробовать в облаке Google Cloud Platform, которое первым получило этот ускоритель. Кроме того, он же будет доступен в рамках платформы NVIDIA Launchpad, да и ключевые OEM-производители тоже взяли его на вооружение.

 NVIDIA L4

NVIDIA L4

Сама NVIDIA называет L4 поистине универсальным серверным ускорителем начального уровня. Он вчетверо производительнее NVIDIA T4 с точки зрения графики и в 2,7 раз — с точки зрения инференса. Маркетинговые упражнения компании при сравнении L4 с CPU оставим в стороне, но отметим, что новинка получила новые аппаратные ускорители (де-)кодирования видео и возможность обработки 130 AV1-потоков 720p30 для мобильных устройств. С L4 возможны различные сценарии обработки видео, включая замену фона, AR/VR, транскрипцию аудио и т.д. При этом ускорителю не требуется дополнительное питание, а сам он выполнен в виде HHHL-карты.

Постоянный URL: http://servernews.ru/1083759
10.11.2022 [01:55], Игорь Осколков

Intel объединила HBM-версии процессоров Xeon Sapphire Rapids и ускорители Xe HPC Ponte Vecchio под брендом Max

В преддверии SC22 и за день до официального анонса AMD EPYC Genoa компания Intel поделилась некоторыми подробностями об HBM-версии процессоров Xeon Sapphire Rapids и ускорителях Ponte Vecchio, которые теперь входят в серию Intel Max.

 Изображения: Intel

Изображения: Intel

Intel Xeon Max предложат до 56 P-ядер, 112,5 Мбайт L3-кеша, 64 Гбайт HBM2e-памяти (четыре стека) с пропускной способностью порядка 1 Тбайт/с, 8 каналов памяти (DDR5-4800 в случае 1DPC, суммарно до 6 Тбайт), а также интерфейсы PCIe 5.0, CXL 1.1, UPI 2.0 и целый ряд различных технологий ускорения для задач HPC и ИИ: AVX-512, DL Boost, AMX, DSA, QAT и т.д. Заявленный уровень TDP составляет 350 Вт.

Первым процессором с набортной HBM-памятью был Arm-чип Fujitsu A64FX (48 ядер, 32 Гбайт HBM2), лёгший в основу суперкомпьютера Fugaku. Intel поднимает планку, давая более 1 Гбайт быстрой памяти на каждое ядро. А поскольку процессор состоит из четырёх отдельных чиплетов, возможно создание четырёх NUMA-доменов с выделенными HBM- и DDR-контроллерами. Но и монолитный режим тоже имеется. А поддержка CXL даёт возможность задействовать RAM-экспандеры.

Intel Xeon Max поддерживают 2S-платформы, что суммарно даёт уже 128 Гбайт HBM-памяти, которых вполне хватит для целого ряда задач. Новые процессоры действительно могут обходиться без DIMM. Но есть и два других режима. В первом HBM-память работает в качестве кеша для обычной памяти, и для системы это происходит прозрачно, так что никаких модификаций для ПО (как в случае отсутствия DIMM вообще) не требуется. Во втором режиме HBM и DDR представлены как отдельные пространства, так что тут дорабатывать ПО придётся, зато можно добиться более эффективного использования обоих типов памяти.

В презентации Intel сравнивает новые Xeon Max с AMD EPYC Milan-X – в зависимости от задачи прирост составляет от +20 % до 4,8 раз. Но, во-первых, уже сегодня эти тесты потеряют всякий смысл в связи с презентацией EPYC Genoa (которые, к слову, должны получить AVX-512), а во-вторых, в следующем году AMD обещает представить Genoa-X с 3D V-Cache. Intel же явно не оставляет попытки создать как можно более универсальный процессор.

Что касается Ponte Vecchio, которые теперь называются Max GPU, то практически ничего нового относительно строения и особенностей данных ускорителей Intel не сказала: до 128 ядер Xe (только теперь стало известно об аппаратном ускорении трассировки лучей, что важно для визуализации), 64 Мбайт L1-кеша и аж 408 Мбайт L2-кеша (из них 120 Мбайт приходится на Rambo-кеш в двух стеках), 16 линий Xe Link, 8 HBM2e-контроллеров на 128 Гбайт памяти и пиковая FP64-производительность на уровне 52 Тфлопс. Все эти характеристики относятся к старшей модели Max Series 1550 в OAM-исполнении с TDP в 600 Вт.

Max Series 1350 предложит 112 ядер Xe и 96 Гбайт HBM2e, но и TDP у этой модели составит всего 450 Вт. Для обеих OAM-версий также будут доступны готовые блоки из четырёх ускорителей (по примеру NVIDIA RedStone), объединённых по схеме «каждый с каждым», так что в сумме можно получить 512 Гбайт HBM2e с ПСП в 12,8 Тбайт/с. Ну а самый простой ускоритель в серии называется Max Series 1100. Это 300-Вт PCIe-плата с 56 Xe-ядрами, 48 Гбайт HBM2e и мостиками Xe Link.

Intel утверждает, что ускорители Max до двух раз быстрее NVIDIA A100 в некоторых задачах, но и здесь история повторяется — нет сравнения с более современными H100. Хотя предварительный доступ к этим ускорителям у Intel есть, поскольку именно Sapphire Rapids являются составной частью платформы DGX H100. В целом, Intel прямо говорит, что наибольшей эффективности вычислений позволяет добиться связка CPU и GPU серии Max в сочетании с oneAPI. Всего на базе решений данной серии готовится более 40 продуктов.

Пока что приоритетным для Intel проектом является 2-Эфлопс суперкомпьютер Aurora, для которого пока что создан тестовый кластер Sunspot со 128 узлами, содержащими ускорители Max. Следующим ускорителем Intel станет Rialto Bridge, который появится в 2024 году. Также компания готовит гибридные (XPU) чипы Falcon Shores, сочетающие CPU, ускорители и быструю память. Аналогичный подход применяют AMD и NVIDIA.

Постоянный URL: http://servernews.ru/1077128
09.11.2022 [14:50], Владимир Мироненко

Производители специально ухудшают характеристики чипов для китайских серверов, чтобы избежать санкций США

В связи с вводом Соединёнными Штатами новых экспортных ограничений на поставки в Китай, производители стали намеренно снижать производительность чипов, чтобы соответствовать требованиям экспортного контроля США и избежать проблем с получением специальных лицензий. Как отметил ресурс The Register, у систем, построенных на чипах NVIDIA, изготовленных на производственных мощностях TSMC для поставок в Китай, характеристики хуже по сравнению с теми, что были ранее.

В частности, китайский производитель серверов Inspur указал на использование вместо ускорителя NVIDIA A100 чипа A800, разработанного NVIDIA специально для Китая в соответствии с экспортными ограничениями. Китайские производители H3C и Omnisky тоже представили решения на базе A800. Данный ускоритель, по словам NVIDIA, начала производиться в III квартале этого года.

У A800 скорость передачи данных составляет 400 Гбайт/с, тогда как у A100 этот показатель равен 600 Гбайт/с, причём обойти эти ограничения, по словам NVIDIA, невозможно. Речь, судя по всему, идёт о характеристиках интерконнекта NVLink, которые прямо влияют на производительность кластеров из двух и более ускорителей в машинном обучении и других задачах. Изменения касаются 40- и 80-Гбайт вариантов с интерфейсами PCIe и SXM.

 Источник изображения: Inspur

Источник изображения: Inspur

Между тем ускорители, находящиеся в разработке и выпускаемые TSMC по контракту с Alibaba и стартапом Biren Technology, тоже, как сообщается, имеют пониженную скорость передачи данных. Это позволит выпускать данные чипы на заводе TSMC, не опасаясь санкций США. До этого TSMC приостановила выпуск 7-нм чипов ускорителей Biren BR100 как раз из-за возможных санкций со стороны Вашингтона.

Постоянный URL: http://servernews.ru/1077080
04.10.2022 [22:57], Алексей Степин

Intel Labs представила нейроморфный ускоритель Kapoho Point — 8 млн электронных нейронов на 10-см плате

Компания Intel уже не первый год развивает направление нейроморфных процессоров — чипов, имитирующих поведение нейронов головного мозга. Уже во втором поколении, Loihi II, процессор получил 128 «ядер», эквивалентных 1 млн «цифровых нейронов», однако долгое время этот чип оставался доступен лишь избранным разработчикам Intel Neuromorphic Research Community через облако.

Но ситуация меняется, пусть и спустя пять лет после анонса первого нейроморфного чипа: компания объявила о выпуске платы Kapoho Point, оснащённой сразу восемью процессорами Loihi II. Напомним, что они производятся с использованием техпроцесса Intel 4 и состоят из 2,3 млрд транзисторов, образующих асинхронную mesh-сеть из 128 нейроморфных ядер, модель работы которых задаётся на уровне микрокода.

 Здесь и далее источник изображений: Intel Labs

Источник изображений: Intel Labs

Площадь кристалла нейроморфоного процессора Intel второго поколения составляет всего 31 мм2. Судя по всему, активного охлаждения Loihi II не требует: даже в первой реализации в виде PCIe-платы Oheo Gulch кулером оснащалась только управляющая ПЛИС, но не сам нейроморфный чип. В своём интервью ресурсу AnandTech Майк Дэвис (Mike Davies), глава проекта, отметил, что в реальных сценариях, выполняемых в человеческом масштабе времени, речь идёт о цифре порядка 100 милливатт, хотя в более быстром масштабе чип, естественно, может потреблять и больше.

 выф

Архитектура и особенности строения Loihi II. По нажатию открывается полноразмерная версия

Новый модуль, по словам компании, способен эмулировать до 1 млрд синапсов, а в задачах оптимизации с большим количеством переменных (до 8 миллионов, эквивалентно количеству «нейронов»), где нейроморфная архитектура Intel очень сильна, он может опережать традиционные процессоры в 1000 раз. Каждое ядро имеет свой небольшой пул быстрой памяти объёмом 192 Кбайт. Шесть выделенных ядер отвечают за управление нейросетью Loihi II; также в составе чипа имеются аппаратные ускорители кодирования-декодирования данных.

Новинка изначально создана модульной: благодаря интерфейсному разъёму несколько плат Kapoho Point можно устанавливать одна над другой. Поддерживаются «бутерброды» толщиной до 8 плат, в деле опробован, однако, вдвое более тонкий вариант, но даже четыре Kapoho Point дают 32 миллиона нейронов в совокупности. Для коммуникации с внешним миром используется интерфейс Ethernet: в чипе реализована поддержка скоростей от 1 (1000BASE-KX) до 10 Гбит/с (10GBase-KR). Размеры каждой платы невелики, всего 4×4 дюйма (102×102 мм).

 Платы Kapoho Point позволяют легко расширять нейросеть на базе Loihi II

Платы Kapoho Point позволяют легко расширять нейросеть на базе Loihi II

В отличие от первого поколения Loihi, доступ к которому можно было получить лишь виртуально, через облако, системы на базе Kapoho Point уже доставлены избранным клиентам Intel, и речь идёт о реальном «железе». В число первых клиентов входит Исследовательская лаборатория ВВС США (Air Force Research Laboratory, AFRL), для задач которой такие достоинства Loihi II, как компактность и экономичность являются решающими.

 Возможности SDK Lava

Возможности SDK Lava

Одновременно с анонсом Kapoho Point компания Intel обновила и фреймворк Lava. В отлчиие от SDK первого поколения Nx новая открытая программная платформа разработки сделана аппаратно-независимой, что позволит разрабатывать нейро-приложения не только на платформе, оснащённой чипами Loihi II.

Постоянный URL: http://servernews.ru/1075270
21.09.2022 [19:32], Алексей Степин

NVIDIA представила ускорители L40 и новую Omniverse-платформу OVX на их основе

На конференции GTC 2022 NVIDIA анонсировала второе поколение систем для симуляции и запуска «цифровых двойников» OVX. Это вовсе не развлечение: использование точных моделей реальных физических объектов, пространств и устройств потенциально весьма выгодно, поскольку симуляция городского квартала для обучения автопилотов или фабрики для оценки взаимодействия роботов с живыми работниками априори будет стоить намного меньше, нежели проведение натурных испытаний.

Зачастую такие симуляции используют тензорные и матричные вычисления, поэтому основой новой платформы OVX стали новые ускорители NVIDIA L40 с архитектурой Ada Lovelace, располагающие ядрами трассировки лучей третьего поколения и тензорными ядрами четвёртого поколения. Они поддерживают как классический трассировку лучей (ray tracing), так и трассировку путей (path tracing), что важно для корректной симуляции поведения различных материалов.

 NVIDIA L40. Здесь и далее источник изображений: NVIDIA

NVIDIA L40. Здесь и далее источник изображений: NVIDIA

Физически L40 представляют собой двухслотовую FHFL-плату расширения PCIe с пассивным охлаждением — теплопакет новинки ограничен рамками 300 Вт. Объём оперативной памяти GDDR6 составляет 48 Гбайт, вдвое больше, нежели у игровых GeForce RTX 4090, и, в отличие от последних, поддерживается совместная работа двух карт в режиме NVLink, что может оказаться полезным в симуляциях с большим объёмом данных. Для вывода изображения служат четыре порта DP 1.4a.

 NVIDIA OVX Server

NVIDIA OVX Server

Каждый сервер NVIDIA OVX будет содержать 8 ускорителей L40 и три сетевых адаптера ConnectX-7 с портами класса 200GbE и поддержкой шифрования сетевого трафика на лету. От 4 до 16 таких серверов составят OVX POD, а 32 или более —кластер SuperPOD.

Такие кластеры станут домом для новой облачной платформы NVIDIA Omniverse Cloud, услуги которой компания планирует предоставлять робототехникам, создателям автономных транспортных средств, «умной инфраструктуры» и вообще всем, кому нужна точная симуляция сложных объектов и систем с качественной визуализацией результатов.

Постоянный URL: http://servernews.ru/1074622
16.09.2022 [22:58], Алексей Степин

SambaNova Systems представила второе поколение ИИ-систем DataScale — SN30 с 5 Гбайт SRAM и 8 Тбайт DRAM

Стартап SambaNova, решивший бросить вызов NVIDIA, представил второе поколение систем машинного обучения — DataScale SN30. В основе лежит собственная разработка компании, ускоритель Cardinal SN30, для обозначения которого SambaNova использует термин Reconfigurable Data Flow Unit (RDU). На новинку уже обратили внимание такие организации, как Аргоннская национальная лаборатория (ANL) и Ливерморская национальная лаборатория им. Э. Лоуренса (LLNL).

Cardinal SN30 состоит из 86 млрд транзисторов и производится с использованием 7-нм техпроцесса TSMC. Главной его особенностью является возможность реконфигурации: создатели уподобляют этот процессор сложным FPGA. Последним он уступает в степени гибкости, поскольку не может менять конфигурацию на уровне отдельных логических вентилей, зато выигрывает в скорости перепрограммирования и уровне энергопотребления. За это отвечает фирменный программный стек.

 Источник: HPCwire

Источник: HPCwire

Большой упор SambaNova сделала на объёме локальной памяти, поскольку современные модели машинного обучения имеют тенденцию к гигантомании. Только SRAM-кеша у Cardinal SN30 640 Мбайт, а объём DRAM составляет 1 Тбайт. По своим параметрам SN30 вдвое превосходит чип первого поколения, SN10, но имеет такую же тайловую архитектуру с программным управлением.

 Здесь и далее источник изображений: SambaNova

Здесь и далее источник изображений: SambaNova

Каждый тайл содержит блоки PCU, отвечающие за вычисления, блоки PMU, содержащие SRAM и обслуживающую логику, а также mesh-интерконнект, обслуживаемый блоками коммутаторов. Такой подход к построению процессора весьма напоминает Tesla D1, у которых вычислительные блоки похожим образом чередуются с блоками быстрой SRAM-памяти. Отдельно ускорители компания не поставляет, минимальная конфигурация готовой 42U-системы DataScale включает в себя 8 чипов SN30.

Комплектация может включать в себя от одного до трёх узлов SN30. Воспользоваться возможностями DataScale можно и в виде услуги, поскольку новинка легко интегрируется в облачные среды и полностью поддерживает платформу Kubernetes. Полный список провайдеров ещё уточняется, на сегодняшний момент партнерами SambaNova являются Aicadium, Cirrascale и ORock.

Высокая производительность в режиме BF16 является главным достоинством новинки — по словам вице-президента SambaNova, каждый чип развивает 688 Тфлопс. Это более чем вдвое выше показателя A100, составляющего 312 Тфлопс. По словам компании, DataScale SN30 вшестеро производительнее NVIDIA DGX A100 (40 Гбайт) и эффективнее всего проявляет себя при обучении сверхбольших моделей вроде GPT-3 с её 13 млрд параметров. Однако нельзя не отметить, что, во-первых, сравнение идёт со старым продуктом NVIDIA, которая вот-вот представит DGX H100, а во-вторых, SambaNova не упоминает в явном виде энергопотребление одного узла SN30.

Постоянный URL: http://servernews.ru/1074385
05.09.2022 [23:00], Алексей Степин

Tesla рассказала подробности о чипах D1 собственной разработки, которые станут основой 20-Эфлопс ИИ-суперкомпьютера Dojo

Компания Tesla уже анонсировала собственный, созданный в лабораториях компании процессор D1, который станет основой ИИ-суперкомпьютера Dojo. Нужна такая система, чтобы создать для ИИ-водителя виртуальный полигон, в деталях воссоздающий реальные ситуации на дорогах. Естественно, такой симулятор требует огромных вычислительных мощностей: в нашем мире дорожная обстановка очень сложна, изменчива и включает множество факторов и переменных.

До недавнего времени о Dojo и D1 было известно не так много, но на конференции Hot Chips 34 было раскрыто много интересного об архитектуре, устройстве и возможностях данного решения Tesla. Презентацию провел Эмиль Талпес (Emil Talpes), ранее 17 лет проработавший в AMD над проектированием серверных процессоров. Он, как и ряд других видных разработчиков, работает сейчас в Tesla над созданием и совершенствованием аппаратного обеспечения компании.

 Изображения: Tesla (via ServeTheHome)

Изображения: Tesla (via ServeTheHome)

Главной идеей D1 стала масштабируемость, поэтому в начале разработки нового чипа создатели активно пересмотрели роль таких традиционных концепций, как когерентность, виртуальная память и т.д. — далеко не все механизмы масштабируются лучшим образом, когда речь идёт о построении действительно большой вычислительной системы. Вместо этого предпочтение было отдано распределённой сети хранения на базе SRAM, для которой был создан интерконнект, на порядок опережающий существующие реализации в системах распределённых вычислений.

Основой процессора Tesla стало ядро целочисленных вычислений, базирующееся на некоторых инструкциях из набора RISC-V, но дополненное большим количеством фирменных инструкций, оптимизированных с учётом требований, предъявляемых ядрами машинного обучения, используемыми компанией. Блок векторной математики был создан практически с нуля, по словам разработчиков.

Набор инструкций Dojo включает в себя скалярные, матричные и SIMD-инструкции, а также специфические примитивы для перемещения данных из локальной памяти в удалённую, равно как и семафоры с барьерами — последние требуются для согласования работы c памятью во всей системе. Что касается специфических инструкций для машинного обучения, то они реализованы в Dojo аппаратно.

Первенец в серии, чип D1, не является ускорителем как таковым — компания считает его высокопроизводительным процессором общего назначения, не нуждающимся в специфических ускорителях. Каждый вычислительный блок Dojo представлен одним ядром D1 с локальной памятью и интерфейсами ввода/вывода. Это 64-бит ядро суперскалярно.

Более того, в ядре реализована поддержка многопоточности (SMT4), которая призвана увеличить производительность на такт (а не изолировать разные задачи друг от друга), поэтому виртуальную память данная реализация SMT не поддерживает, а механизмы защиты довольно ограничены в функциональности. За управление ресурсами Dojo отвечает специализированный программный стек и фирменное ПО.

64-бит ядро имеет 32-байт окно выборки (fetch window), которое может содержать до 8 инструкций, что соответствует ширине декодера. Он, в свою очередь, может обрабатывать два потока за такт. Результат поступает в планировщики, которые отправляют его в блок целочисленных вычислений (два ALU) или в векторный блок (SIMD шириной 64 байт + перемножение матриц 8×8×4).

У каждого ядра D1 есть SRAM объёмом 1,25 Мбайт. Эта память — не кеш, но способна загружать данные на скорости 400 Гбайт/с и сохранять на скорости 270 Гбайт/с, причём, как уже было сказано, в чипе реализованы специальные инструкции, позволяющие работать с данными в других ядрах Dojo. Для этого в блоке SRAM есть свои механизмы, так что работа с удалённой памятью не требуют дополнительных операций.

Что касается поддерживаемых форматов данных, то скалярный блок поддерживает целочисленные форматы разрядностью от 8 до 64 бит, а векторный и матричный блоки — широкий набор форматов с плавающей запятой, в том числе для вычислений смешанной точности: FP32, BF16, CFP16 и CFP8. Разработчики D1 пришли к использованию целого набора конфигурируемых 8- и 16-бит представлений данных — компилятор Dojo может динамически изменять значения мантиссы и экспоненты, так что система может использовать до 16 различных векторных форматов, лишь бы в рамках одного 64-байт блока данных он не менялся.

Как уже упоминалось, топология D1 использует меш-структуру, в которой каждые 12 ядер объединены в логический блок. Чип D1 целиком представляет собой массив размером 18×20 ядер, однако доступны лишь 354 ядра из 360 присутствующих на кристалле. Сам кристалл площадью 645 мм2 производится на мощностях TSMC с использованием 7-нм техпроцесса. Тактовая частота составляет 2 ГГц, общий объём памяти SRAM — 440 Мбайт.

Процессор D1 развивает 362 Тфлопс в режиме BF16/CFP8, в режиме FP32 этот показатель снижается до 22 Тфлопс. Режим FP64 векторными блоками D1 не поддерживается, поэтому для многих традиционных HPC-нагрузок данный процессор не подойдёт. Но Tesla создавала D1 для внутреннего использования, поэтому совместимость её не очень волнует. Впрочем, в новых поколениях, D2 или D3, такая поддержка может появиться, если это будет отвечать целям компании.

Каждый кристалл D1 имеет 576-битный внешний интерфейс SerDes с совокупной производительностью по всем четырём сторонам, составляющей 18 Тбайт/с, так что узким местом при соединении D1 он явно не станет. Этот интерфейс объединяет кристаллы в единую матрицу 5х5, такая матрица из 25 кристаллов D1 носит название Dojo training tile.

Этот тайл выполнен как законченный термоэлектромеханический модуль, имеющий внешний интерфейс с пропускной способностью 4,5 Тбайт/с на каждую сторону, совокупно располагающий 11 Гбайт памяти SRAM, а также собственную систему питания мощностью 15 кВт. Вычислительная мощность одного тайла Dojo составляет 9 Пфлопс в формате BF16/CFP8. При таком уровне энергопотребления охлаждение у Dojo может быть только жидкостное.

Тайлы могут объединяться в ещё более производительные матрицы, но как именно физически организован суперкомпьютер Tesla, не вполне ясно. Для связи с внешним миром используются блоки DIP — Dojo Interface Processors. Это интерфейсные процессоры, посредством которых тайлы общаются с хост-системами и на долю которых отведены управляющие функции, хранение массивов данных и т.п. Каждый DIP не просто выполняет IO-функции, но и содержит 32 Гбайт памяти HBM (не уточняется, HBM2e или HBM3).

DIP использует полностью свой транспортный протокол (Tesla Transport Protocol, TTP), разработанный в Tesla и обеспечивающий пропускную способность 900 Гбайт/с, а поверх Ethernet — 50 Гбайт/с. Внешний интерфейс у карточек — PCI Express 4.0, и каждая интерфейсная карта несёт пару DIP. С каждой стороны каждого ряда тайлов установлено по 5 DIP, что даёт скорость до 4,5 Тбайт/с от HBM-стеков к тайлу.

В случаях, когда во всей системе обращение от тайла к тайлу требует слишком много переходов (до 30 в случае обращения от края до края), система может воспользоваться DIP, объединённых снаружи 400GbE-сетью по топологии fat tree, сократив таким образом, количество переходов до максимум четырёх. Пропускная способность в этом случае страдает, но выигрывает латентность, что в некоторых сценариях важнее.

В базовой версии суперкомпьютер Dojo V1 выдаёт 1 Эфлопс в режиме BF16/CFP8 и может загружать непосредственно в SRAM модели объёмом до 1,3 Тбайт, ещё 13 Тбайт данных можно хранить в HBM-сборках DIP. Следует отметить, что пространство SRAM во всей системе Dojo использует единую плоскую адресацию. Полномасштабная версия Dojo будет иметь производительность до 20 Эфлопс.

Сколько сил потребуется компании, чтобы запустить такого монстра, а главное, снабдить его рабочим и приносящим пользу ПО, неизвестно — но явно немало. Известно, что система совместима с PyTorch. В настоящее время Tesla уже получает готовые чипы D1 от TSMC. А пока что компания обходится самым большим в мире по числу установленных ускорителей NVIDIA ИИ-суперкомпьютером.

Постоянный URL: http://servernews.ru/1073480
Система Orphus