Материалы по тегу: инференс

10.05.2022 [22:46], Игорь Осколков

Intel анонсировала ИИ-ускорители Habana Gaudi2 и Greco

На мероприятии Intel Vision было анонсировано второе поколение ИИ-ускорителей Habana: Gaudi2 для задач глубокого обучения и Greco для инференс-систем. Оба чипа теперь производятся с использованием 7-нм, а не 16-нм техпроцесса, но это далеко не единственное улучшение.

Gaudi2 выпускается в форм-факторе OAM и имеет TDP 600 Вт. Это почти вдвое больше 350 Вт, которые были у Gaudi, но второе поколение чипов значительно отличается от первого. Так, объём набортной памяти увеличился втрое, т.е. до 96 Гбайт, и теперь это HBM2e, так что в итоге и пропускная способность выросла с 1 до 2,45 Тбайт/с. Объём SRAM вырос вдвое, до 48 Мбайт. Дополняют память DMA-движки, способные преобразовывать данные в нужную форму на лету.

 Изображения: Intel/Habana

Изображения: Intel/Habana

В Gaudi2 имеется два основных типа вычислительных блоков: Matrix Multiplication Engine (MME) и Tensor Processor Core (TPC). MME, как видно из названия, предназначен для ускорения перемножения матриц. TPC же являются программируемыми VLIW-блоками для работы с SIMD-операциями. TPC поддерживают все популярные форматы данных: FP32, BF16, FP16, FP8, а также INT32, INT16 и INT8. Есть и аппаратные декодеры HEVC, H.264, VP9 и JPEG.

Особенностью Gaudi2 является возможность параллельной работы MME и TPC. Это, по словам создателей, значительно ускоряет процесс обучения моделей. Фирменное ПО SynapseAI поддерживает интеграцию с TensorFlow и PyTorch, а также предлагает инструменты для переноса и оптимизации готовых моделей и разработки новых, SDK для TPC, утилиты для мониторинга и оркестрации и т.д. Впрочем, до богатства программной экосистемы как у той же NVIDIA пока далеко.

Интерфейсная часть новинок включает PCIe 4.0 x16 и сразу 24 (ранее было только 10) 100GbE-каналов с RDMA ROcE v2, которые используются для связи ускорителей между собой как в пределах одного узла (по 3 канала каждый-с-каждым), так и между узлами. Intel предлагает плату HLBA-225 (OCP UBB) с восемью Gaudi2 на борту и готовую ИИ-платформу, всё так же на базе серверов Supermicro X12, но уже с новыми платами, и СХД DDN AI400X2.

Наконец, самое интересное — сравнение производительности. В ряде популярных нагрузок новинка оказывается быстрее NVIDIA A100 (80 Гбайт) в 1,7–2,8 раз. На первый взгляд результат впечатляющий. Однако A100 далеко не новы. Более того, в III квартале этого года ожидается выход ускорителей H100, которые, по словам NVIDIA, будут в среднем от трёх до шести раз быстрее A100, а благодаря новым функциям прирост в скорости обучения может быть и девятикратным. Ну и в целом H100 являются более универсальными решениями.

Gaudi2 уже доступны клиентам Habana, а несколько тысяч ускорителей используются самой Intel для дальнейшей оптимизации ПО и разработки чипов Gaudi3. Greco будут доступны во втором полугодии, а их массовое производство намечено на I квартал 2023 года, так что информации о них пока немного. Например, сообщается, что ускорители стали намного менее прожорливыми по сравнению с Goya и снизили TDP с 200 до 75 Вт. Это позволило упаковать их в стандартную HHHL-карту расширения с интерфейсом PCIe 4.0 x8.

Объём набортной памяти всё так же равен 16 Гбайт, но переход от DDR4 к LPDDR5 позволил впятеро повысить пропускную способность — с 40 до 204 Гбайт/с. Зато у самого чипа теперь 128 Мбайт SRAM, а не 40 как у Goya. Он поддерживает форматы BF16, FP16, (U)INT8 и (U)INT4. На борту имеются кодеки HEVC, H.264, JPEG и P-JPEG. Для работы с Greco предлагается тот же стек SynapseAI. Сравнения производительности новинки с другими инференс-решениями компания не предоставила.

Впрочем, оба решения Habana выглядят несколько запоздалыми. В отставании на ИИ-фронте, вероятно, отчасти «виновата» неудачная ставка на решения Nervana — на смену так и не вышедшим ускорителям NNP-T для обучения пришли как раз решения Habana, да и новых инференс-чипов NNP-I ждать не стоит. Тем не менее, судьба Habana даже внутри Intel не выглядит безоблачной, поскольку её решениям придётся конкурировать с серверными ускорителями Xe, а в случае инференс-систем даже с Xeon.

Постоянный URL: http://servernews.ru/1065645
14.12.2021 [21:11], Владимир Агапов

Китайская Enflame выпустила новый ИИ-ускоритель Cloudblazer Yunsui i20

Компания Enflame, которая летом этого года представляла ускорители на базе второго поколения своих ИИ-чипов DTU, выпустила новый инференс-ускоритель Cloudblazer Yunsui i20 с чипом Suixi 2.5. Он изготовлен по 12-нм FinFET-техпроцессу GlobalFoundries и имеет обновлённую высокопроизводительную архитектуру вычислительных ядер GCU-CARE 2.0, благодаря чему, по словам создателей, удалось достичь эффективности, сопоставимой с массовыми 7-нм GPU.

В числе ключевых особенностей новинки компания отмечает возросшую вычислительную мощность, возможность исполнения тензорных, векторных и скалярных вычислений, API для C++ и Python, а также поддержку основных фреймворков и форматов моделей (TensorFlow, PyTorch, ONNX). Комплектное ПО предоставляет гибкие возможности для миграции с поддержкой технологий виртуализации, а также многопользовательских и многозадачных окружений с безопасной изоляцией процессов.

Yunsui i20 обладает 16 Гбайт памяти HBM2e с пропускной способностью до 819 Гбайт/c. Новинка поддерживает работу со всеми ключевыми форматами и предоставляет универсальную инференс-платформу, в том числе для облаков. Пиковая вычислительная FP32-производительность достигает 32 Тфлопс, TF32 (не уточняется, идёт ли речь о совместимости с NVIDIA) — 128 Тфлопс, FP16/BF16 — 128 Тфлопс, а INT8 достигает 256 Топс. По сравнению с первым поколением продуктов, Yunsui i20 увеличил FP-производительность в 1,8 раза, а INT-вычислений — в 3,6 раза.

Для сравнения — у PCIe-версии NVIDIA A100 производительность в расчётах FP32, TF32, FP16/BF16 и INT8 составляет 19,5, 156, 312 и 624 Тфлопс (Топс для INT), а объём и пропускная способность памяти равны 40/80 Гбайт и 1555/1935 Гбайт/с соответственно. У AMD MI100 объём HBM2-памяти равен 32 Гбайт (1,23 Тбайт/с), а производительность FP32, FP16 и BF16 равна 46,1, 184,6 и 92,3 Тфлопс соответственно. Все три ускорителя имеют интерфейс PCIe 4.0.

Значительный вклад в повышение производительности принесла оптимизация фирменного программного стека TopsRider, благодаря которой снизилась нагрузка на подсистему памяти. В результате средняя производительность исполнения моделей увеличилась в 3,5 раза, а эффективность использование вычислительной мощности — в среднем в 2 раза. Кроме того, новая модель программирования и технологии автоматизации позволяют ускорить эффективность разработки и снизить стоимость миграции моделей. В компании убеждены, что всё это сделает Yunsui i20 более конкурентноспособным решением.

Благодаря технологии виртуализации, Yunsui i20 можно разделить на 6 независимых, изолированных друг от друга доменов — такое ранее предлагала только NVIDIA. Вместе с другими продуктами, которые также полностью переведены на новое поколение ИИ-ускорителей, Enflame рассчитывает получить значимую долю рынка в таких инновационных секторах как умные города и цифровое правительство, а также в традиционных отраслях вроде финансов, транспорта и энергетики, где будут востребованы более совершенные решения на основе ИИ.

Несмотря на очевидные успехи, достигнутые командой Enflame и другими китайскими разработчиками — SoC от YITU Technology для глубокого обучения, IoT-чип Horizon Robotics Sunrise 2 с интегрированными ИИ-возможностями, Hanguang 800 от T-Head Semiconductor («дочка» Alibaba), серии Huawei Ascend и других — иностранные производители ИИ-чипов, по данным People's Daily, по-прежнему доминируют на китайском рынке с долей более 80%.

Постоянный URL: http://servernews.ru/1055887
26.08.2021 [03:07], Алексей Степин

Получены первые образцы 1000-ядерного суперкомпьютера-на-чипе Esperanto ET-SoC-1

Рекомендательные системы, активно используемые социальными сетями, рекламными платформами и т.д. имеют специфические особенности. От них требуется высокая скорость отклика, но вместе с тем их ИИ-модели весьма объёмны, порядка 100 Гбайт или более. А для их эффективной работы нужен ещё и довольно большой кеш. Для инференса чаще всего используется либо CPU (много памяти, но относительно низкая скорость) или GPU (высокая скорость, но мало памяти), но они не слишком эффективны для этой задачи.

При этом существуют ещё и физические ограничения со стороны гиперскейлеров: в сервере не так много полноценных PCIe-слотов и свободного места + есть жёсткие ограничения по энергопотреблению и охлаждению (чаще всего воздушному). Всё это было учтено компанией Esperanto, чьей специализацией является разработка чипов на базе архитектуры RISC-V. На днях она получила первые образцы ИИ-ускорителя ET-SoC-1, который она сама называет суперкомпьютером-на-чипе (Supercomputer-on-Chip).

Новинка предназначена для инференса рекомендательных систем, в том числе на периферии, где на первый план выходит экономичность. Компания поставила для себя непростую задачу — весь комплекс ускорителей с памятью и служебной обвязкой должен потреблять не более 120 Вт. Для решения этой задачи пришлось применить немало ухищрений. Самое первое и очевидное — создание относительно небольшого, но универсального чипа, который можно было бы объединять с другими такими же чипами с линейным ростом производительности.

Для достижения высокой степени параллелизма основой такого чипа должны стать небольшие, но энергоэффективные ядра. Именно поэтому выбор пал на 64-бит ядра RISC-V, поскольку они «просты» не только с точки зрения ISA, но и по транзисторному бюджету. Чип ET-SoC-1 сочетает в себе два типа ядер RISC-V: классических «больших» ядер (ET-Maxion) с внеочередным выполнением у него всего 4, зато «малых» ядер (ET-Minion) с поддержкой тензорных и векторных вычислений — целых 1088.

На комплекс ядер ET-Maxion возлагаются задачи общего назначения и в ИИ-вычислениях он напрямую не участвует, зато позволяет быть ET-SoC-1 полностью автономным, так как прямо на нём можно запустить Linux. Помогает ему в этом ещё один служебный RISC-V процессор для периферии. А вот ядра ET-Minion довольно простые: внеочередного исполнения инструкций в них нет, зато есть поддержка SMT2 и целый набор новых инструкций для INT- и FP-операций с векторами и тензорами.

За каждый такт ядро ET-Minion способно выполнять 128 INT8-операций с сохранением INT32-результата, 16 FP32-операций или 32 — FP16. «Длинные» тензорные операции могут непрерывно исполняться в течение 512 циклов (до 64 тыс. операций), при этом целочисленные блоки в это время отключаются для экономии питания. Система кешей устроена несколько непривычным образом. На ядро приходится 4 банка памяти, которые можно использовать как L1-кеш для данных и как быструю универсальную память (scratchpad).

Восемь ядер ET-Minion формируют «квартал» вокруг общего для них кеша инструкций, так как на таких задачах велика вероятность того, что инструкции для всех ядер действительно будут одни и те же. Кроме того, это энергоэффективнее, чем восемь индивидуальных кешей, и позволяет получать и отправлять данные большими блоками, снижая нагрузку на L2-кеш. Восемь «кварталов» формируют «микрорайон» с коммутатором и четырьмя банками SRAM объёмом по 1 Мбайт, которые можно использовать как приватный L2-кеш, как часть общего L3-кеша или как scratchpad.

Посредством mesh-сети «микрорайоны» общаются между собой и с другими блоками: ET-Maxion, восемь двухканальных контроллеров памяти, два root-комплекса PCIe 4.0 x8, аппаратный RoT. Суммарно на чип приходится порядка 160 Мбайт SRAM. Контроллеры оперативной памяти поддерживают модули LPDDR4x-4267 ECC (256 бит, до 137 Гбайт/с). Тактовая частота ET-Minion варьируется в пределах от 500 МГц до 1,5 ГГц, а ET-Maxion — от 500 МГц до 2 ГГц.

В рамках OCP-блока Glacier Point V2 компания объединила на одной плате шесть ET-SoC-1 (всего 6558 ядер RISC-V), снабдив их 192 Гбайт памяти (822 Гбайт/с) — это больше, нежели у NVIDIA A100 (80 Гбайт). Такая связка развивает более 800 Топс, требуя всего 120 Вт. В среднем же она составляет 100 ‒ 200 Топс на один чип с потреблением менее 20 Вт. Это позволяет создать компактный M.2-модуль или же наоборот масштабировать систему далее. Шасси Yosemite v2 может вместить 64 чипа, а стойка — уже 384 чипа.

В тесте MLPerf для рекомендательных систем производительность указанной выше связки из шести чипов в пересчёте на Ватт оказалась в 123 раза выше, чем у Intel Xeon Platinum 8380H (250 Вт), и в два-три раза выше, чем у NVIDIA A10 (150 Вт) и T4 (70 Вт). В «неудобном» для чипа тесте ResNet-50 разница с CPU и ускорителем Habana Goya уже не так велика, а вот с решениями NVIDIA, напротив, более заметна.

При этом о поддержке со стороны ПО разработчики также подумали: чипы Esperanto могут работать с широко распространёнными фреймворками PyTorch, TensorFlow, MXNet и Caffe2, а также принимать готовые ONNX-модели. Есть и SDK для C++, а также драйверы для x86-хостов.

Опытные образцы изготовлены на TSMC по 7-нм техпроцессу. Кристалл площадью 570 мм2 содержит 24 млрд транзисторов. Чип имеет упаковку BGA2494 размерами 45 × 45 мм2. Энергопотребление (а вместе с ним и производительность) настраивается в диапазоне от 10 до 60+ Ватт. Потенциальным заказчикам тестовые чипы станут доступны до конца года. Компания также готова адаптировать ET-SoC-1 под другие техпроцессы и фабрики, но демо на базе OCP-платформы и сравнение с Cooper Lake — это недвусмысленный намёк для Facebook, что Esperanto будет рада видеть её в числе первых клиентов.

Постоянный URL: http://servernews.ru/1047568
01.10.2020 [11:51], Юрий Поздеев

Hailo: новые модули ускорения ИИ для периферийных вычислений

Hailo, производитель микросхем для систем искусственного интеллекта (ИИ), выпустила новые высокопроизводительные модули в форм-факторах M.2 и mini PCIe для расширения возможностей периферийных систем.

 Источник изображений: Hailo

Источник изображений: Hailo

Модули на базе процессора Hailo-8 можно подключать к различным периферийным устройствам, что позволяет использовать возможности ИИ в умных домах, розничной торговле и промышленности.

Модули Hailo легко интегрируются в стандартные платформы, такие как TensorFlow и ONNX, что позволяет значительно упростить использование новинок в комплексных решениях. Заказчики могут оперативно перенести свои решения с нейронными сетями на модули Hailo-8.

Спрос на высокопроизводительные периферийные устройства постоянно растет, поэтому безвентиляторные модули Hailo-8 будут востребованы, например, в видеоаналитике, либо для подключения большого количества внешних датчиков для сбора и обработки информации в режиме реального времени. Процессор Hailo-8 способен обеспечить 26 TOPS, при этом имеет энергоэффективность 3 TOPS/Вт.

Модуль Hailo-8 M.2 уже интегрирован в следующее поколение Foxconn BOXiedge (24-ядерный мини сервер, который потребляет всего 30 Вт, при этом обладает неплохими показателями производительности). Наличие готового продукта позволит ускорить внедрение новых модулей в периферийные вычисления и значительно упростить этот процесс для конечного заказчика.

Постоянный URL: http://servernews.ru/1021934
18.09.2020 [15:55], Алексей Степин

ИИ-ускоритель Qualcomm Cloud AI 100 обещает быть быстрее и экономичнее NVIDIA T4

Ускорители работы с нейросетями делятся, грубо говоря, на две категории: для обучения и для исполнения (инференса). Именно для последнего случая важна не столько «чистая» производительность, сколько сочетание производительности с экономичностью, так как работают такие устройства зачастую в стеснённых с точки зрения питания условиях. Компания Qualcomm предлагает новые ускорители Cloud AI 100, сочетающие оба параметра.

Сам нейропроцессор Cloud AI 100 был впервые анонсирован ещё весной прошлого года, и Qualcomm объявила, что этот чип разработан с нуля и обеспечивает вдесятеро более высокий уровень производительности в пересчёте на ватт, в сравнении с существовавшими на тот момент решениями. Начало поставок было запланировано на вторую половину 2019 года, но как мы видим, по-настоящему ускорители на базе данного чипа на рынке появились только сейчас, причём речь идёт о достаточно ограниченных, «пробных» объёмах поставок.

В отличие от графических процессоров и ПЛИС-акселераторов, которые часто применяются при обучении нейросетей и, будучи универсальными, потребляют при этом серьёзные объёмы энергии, инференс-чипы обычно представляют собой специализированные ASIC. Таковы, например, Google TPU Edge, к этому же классу относится и Cloud AI 100. Узкая специализация позволяет сконцентрироваться на достижении максимальной производительности в определённых задачах, и Cloud AI 100 более чем в 50 раз превосходит блок инференс-процессора, входящий в состав популярной SoC Qualcomm Snapdragon 855.

На приводимых Qualcomm слайдах архитектура Cloud AI 100 выглядит достаточно простой: чип представляет собой набор специализированных интеллектуальных блоков (IP, до 16 юнитов в зависимости от модели), дополненный контроллерами LPDDR (4 канала, до 32 Гбайт, 134 Гбайт/с), PCI Express (до 8 линий 4.0), а также управляющим модулем. Имеется некоторый объём быстрой набортной SRAM (до 144 Мбайт). С точки зрения поддерживаемых форматов вычислений всё достаточно универсально: реализованы INT8, INT16, FP16 и FP32. Правда, bfloat16 не «доложили».

Об эффективности новинки говорят приведённые самой Qualcomm данные: если за базовый уровень принять систему на базе процессоров Intel Cascade Lake с потреблением 440 Ватт, то Qualcomm Cloud AI 100 в тесте ResNet-50 быстрее на два порядка при потреблении всего 20 Ватт. Это, разумеется, не предел: на рынок новый инференс-ускоритель может поставляться в трёх различных вариантах, два из которых компактные, форм-факторов M.2 и M.2e с теплопакетами 25 и 15 Ватт соответственно. Даже в этих вариантах производительность составляет 200 и около 500 Топс (триллионов операций в секунду), а существует и 75-Ватт PCIe-плата формата HHHL производительностью 400 Топс; во всех случаях речь идёт о режиме INT8.

 Данные для NVIDIA Tesla T4 и P4 приведены для сравнения

Данные для NVIDIA Tesla T4 и P4 приведены для сравнения

Основными конкурентами Cloud AI 100 можно назвать Intel/Habana Gaia и NVIDIA Tesla T4. Оба этих процессора также предназначены для инференс-систем, они гибче архитектурно — особенно T4, который, в сущности, базируется на архитектуре Turing —, однако за это приходится платить как ценой, так и повышенным энергопотреблением — это 100 и 70 Ватт, соответственно. Пока речь идёт о распознавании изображений с помощью популярной сети ResNet-50, решение Qualcomm выглядит великолепно, оно на голову выше основных соперников. Однако в иных случаях всё может оказаться не столь однозначно.

 Новые ускорители Qualcomm будут доступны в разных форм-факторах

Новые ускорители Qualcomm будут доступны в разных форм-факторах

Как T4, так и Gaia, а также некоторые другие решения, вроде Groq TSP, за счёт своей гибкости могут оказаться более подходящим выбором за пределами ResNet в частности и INT8 вообще. Если верить Qualcomm, то компания в настоящее время проводит углублённое тестирование Cloud AI 100 и на других сценариях в MLPerf, но в открытом доступе результатов пока нет. Разработчики сосредоточены на удовлетворении конкретных потребностей заказчиков. Также заявлено о том, что высокая производительность на крупных наборах данных может быть достигнута путём масштабирования — за счёт использования в системе нескольких ускорителей Cloud AI 100.

В настоящее время для заказа доступен комплект разработчика на базе Cloud Edge AI 100. Основная его цель заключается в создании и отработке периферийных ИИ-устройств. Система достаточно мощная, она включает в себя процессор Snapdragon 865, 5G-модем Snapdragon X55 и ИИ-сопроцессор Cloud AI 100. Выполнено устройство в металлическом защищённом корпусе с четырьмя внешними антеннами. Начало крупномасштабных коммерческих поставок намечено на первую половину следующего года.

Постоянный URL: http://servernews.ru/1020978

Входит в перечень общественных объединений и религиозных организаций, в отношении которых судом принято вступившее в законную силу решение о ликвидации или запрете деятельности по основаниям, предусмотренным Федеральным законом от 25.07.2002 № 114-ФЗ «О противодействии экстремистской деятельности»;

Система Orphus