Материалы по тегу: hpc

07.02.2023 [19:37], Руслан Авдеев

Регулирование оборота «вечных» PFAS-химикатов и отказ 3M от их выпуска могут значительно повлиять на будущее погружных СЖО

Перфторалкильные и полифторалкильные вещества (PFAS, «вечные химикаты»), вероятно, представляют угрозу для здоровья людей, хотя их вредоносность по многим параметрам пока не получила документальных подтверждений. Тем не менее, как сообщает портал HPC Wire, PFAS привлекают всё больше внимания регуляторов, а принятые против них в ЕС меры грозят всей полупроводниковой индустрии. Теперь этими веществами заинтересовались и американские регуляторы, включая Агентство по охране окружающей среды США (EPA), что может привести к изменению перспектив развития HPC-индустрии.

Дело в том, что PFAS используются в двухфазных системах погружного охлаждения. В частности, речь идёт о жидкостях Novec и Fluorinert компании 3M, также применяемых при выпуске полупроводников и в других сферах. В конце 2022 года 3M заявила, что намерена полностью отказаться от их производства уже к 2025 году и уже остановила крупнейший завод по их выпуску в Бельгии. Действия регуляторов и отказ 3M от производства может привести к серьёзным изменениям в HPC-индустрии, поскольку поставит под угрозу бесперебойность поставок необходимых компонентов и материалов.

 Источник изображения: 3M

Источник изображения: 3M

Но есть и другие факторы. Так, крупные международные производители СЖО будут ориентироваться на страны с наиболее жёсткими регуляторными нормами, даже если на других рынках условия более благоприятны. А крупные заказчики вроде Google и Microsoft, декларирующие достижение определённых целей по защите окружающей среды, могут отказаться от PFAS просто из-за репутационных рисков, даже если PFAS будут вполне легальны. По мнению экспертов Motivair, ужесточение контроля за PFAS может представлять угрозу широкомасштабному распространению технологий двухфазного погружного охлаждения.

Впрочем, далеко не все уверены, что новые ограничения могут изменить тренды на рынке HPC, поскольку многие игроки здесь применяют, по их словам, эффективные и безопасные системы на основе других технологий СЖО и химикатов. Как сообщает DataCenter Dynamics, по данным производителя иммерсионных СЖО LiquidStack, большее влияние ограничения на использование PFAS могут оказать на полупроводниковую отрасль, где подобные вещества широко применяются в процессе производства. В компании утверждают, что имеется немало альтернатив жидкостям 3M, хотя как минимум некоторые из них тоже являются PFAS.

Постоянный URL: http://servernews.ru/1081555
29.11.2022 [17:12], Алексей Степин

AWS представила Arm-процессор Graviton3E, оптимизированный для задач ИИ и HPC

Один из крупнейших облачных провайдеров, компания Amazon Web Services объявила о доступности новых инстансов EC2 на базе процессора Graviton3E. Новый чип — наследник анонсированного в конце 2021 года Graviton3, 5-нм 64-ядерного процессора на дизайне Arm Neoverse V1 (Zeus) с поддержкой DDR5 и PCI Express 5.0.

Graviton3 использует набор команд Armv8.4 c расширениями Neon (4×128 бит) и SVE (2×256 бит) и поддерживает работу с популярными в сфере машинного обучения форматами данных INT8 и BF16. В сравнении c Graviton2 процессор быстрее на 25-60 % при сохранении аналогичного уровня тепловыделения. Дизайн серверов AWS предусматривает наличие трёх процессоров на узел высотой 1U.

 Изображения: AWS

Изображения: AWS

Новый процессор Graviton3E представляет собой дальнейшее развитие Graviton3. Чип оптимизирован с учётом потребностей рынка высокопроизводительных вычислений и основное внимание в его архитектуре уделено повышению производительности на операциях с плавающей запятой и вычислениях с использованием векторной математики.

AWS, к сожалению, пока не раскрывает деталей относительно архитектуры Graviton3E, но прирост производительности на векторных операциях относительно обычного Graviton3 может достигать 35 %. Помимо классического теста HPL новый процессор хорошо проявляет себя в тестах, имитирующих медико-биологические и финансовые задачи.

Сценарии нагрузок, характерные для HPC, как правило, активно оперируют перемещением крупных объемов данных. Чтобы оптимизировать этот процесс, в новых инстансах AWS использует сеть на базе Elastic Fabric с новыми адаптерами Elastic Network Adapter (ENA). Такая сеть оперирует т. н. Scalable Reliable Datagram (SRD) вместо всем привычных TCP-пакетов. SRD позволяет организовать повторную отправку пакетов за микросекунды вместо миллисекунд в классическом Ethernet.

Сердцем же новых инстансов AWS стало пятое поколение аппаратных гипервизоров Nitro 5. В сравнении с предыдущим поколением, Nitro 5 обладает вдвое более высокой вычислительной производительностью, на 50 % повышенной пропускной способностью памяти, а также позволяет обрабатывать на 60 % больше сетевых пакетов при сниженной на 30 % латентности.

 Здесь и далее источник изображений: AWS

Здесь и далее источник изображений: AWS

Инстансы Hpc7g с процессорами Graviton3E получат внутреннюю сеть с пропускной способностью 200 Гбит/с и станут доступны в различных конфигурациях вплоть до 64 vCPU и 128 ГиБ памяти. Аналогичные параметры имеют инстансы C7gn, предназначенные для задач с интенсивным сетевым трафиком: виртуальных маршрутизаторов, сетевых экранов, балансировщиков нагрузки и т.п.

Также компания анонсировала инстансы R7iz, в которых используются процессоры Intel Xeon Scalable четвёртого поколения (Sapphire Rapids) с постоянной частотой всех ядер 3,9 ГГц. Они могут иметь конфигурацию до 128 vCPU с 1 ТиБ памяти.

Постоянный URL: http://servernews.ru/1078086
29.11.2022 [12:20], Сергей Карасёв

В Италии официально запущен суперкомпьютер Leonardo — четвёртая по мощности HPC-система в мире

Совместная инициатива по высокопроизводительным вычислениям в Европе EuroHPC JU и некоммерческий консорциум CINECA, состоящий из 69 итальянских университетов и 21 национальных исследовательских центров, провели церемонию запуска суперкомпьютера Leonardo.

В основу комплекса положены платформы Atos BullSequana X2610 и X2135. Система Leonardo состоит из двух секций — общего назначения и с ускорителями вычислений (Booster). Когда строительство системы будет завершено, первая будет включать 1536 узлов, каждый из которых содержит два процессора Intel Xeon Sapphire Rapids с 56 ядрами и TDP в 350 Вт, 512 Гбайт оперативной памяти DDR5-4800, интерконнект NVIDIA InfiniBand HDR100 и NVMe-накопитель на 8 Тбайт.

 Источник изображения: HPCwire

Источник изображения: HPCwire

Секция Booster объединяет 3456 узлов, каждый из которых содержит один чип Intel Xeon 8358 с 32 ядрами, 512 Гбайт ОЗУ стандарта DDR4-3200, четыре кастомных ускорителя NVIDIA A100 с 64 Гбайт HBM2-памяти, а также два адаптера NVIDIA InfiniBand HDR100. Кроме того, в состав комплекса входят 18 узлов для визуализации: 6,4 Тбайт NVMe SSD и два ускорителя NVIDIA RTX 8000 (48 Гбайт) в каждом. Вычислительный комплекс объединён фабрикой с топологией Dragonfly+.

 Источник: CINECA

Источник: CINECA

Для хранения данных служит двухуровневая система. Производительный блок (5,4 Пбайт, 1400 Гбайт/с) содержит 31 модуль DDN Exascaler ES400NVX2, каждый из которых укомплектован 24 NVMe SSD вместимостью 7,68 Тбайт и четырьмя адаптерами InfiniBand HDR. Второй уровень большой ёмкости (106 Пбайт, чтение/запись 744/620 Гбайт/с) состоит из 31 массива DDN EXAScaler SFA799X с 82 SAS HDD (7200 PRM) на 18 Тбайт и четырьмя адаптерами InfiniBand HDR. Каждый из массивов включает два JBOD-модуля с 82 дисками на 18 Тбайт. Для хранения метаданных используются 4 модуля DDN EXAScaler SFA400NVX: 24 × 7,68 Тбайт NVMe + 4 × InfiniBand HDR.

 Изображение: CINECA

Изображение: CINECA

В настоящее время Leonardo обеспечивает производительность более 174 Пфлопс. Ожидается, что суперкомпьютер будет полностью запущен в первой половине 2023 года, а его пиковое быстродействие составит 250 Пфлопс. Уже сейчас система занимает четвёртое место в последнем рейтинге самых мощных суперкомпьютеров мира TOP500. В Европе Leonardo является второй по мощности системой после LUMI.

Leonardo оборудован системой жидкостного охлаждения для повышения энергоэффективности. Кроме того, предусмотрена возможность регулировки энергопотребления для обеспечения баланса между расходом электричества и производительностью. Суперкомпьютер ориентирован на решение высокоинтенсивных вычислительных задач, таких как обработка данных, ИИ и машинное обучение. Половина вычислительных ресурсов Leonardo будет предоставлена пользователям EuroHPC.

Постоянный URL: http://servernews.ru/1078045
15.11.2022 [19:08], Сергей Карасёв

Cerebras построила ИИ-суперкомпьютер Andromeda с 13,5 млн ядер

Компания Cerebras Systems сообщила о запуске уникального вычислительного комплекса Andromeda для выполнения «тяжёлых» ИИ-нагрузок. В основу Andromeda положен кластер из 16 блоков Cerebras CS-2, объединённых 96,8-Тбит/с фабрикой. Каждый из них содержит чип WSE-2, насчитывающий 850 тыс. ядер. Таким образом, общее число ядер достигает 13,5 млн. Кроме того, непосредственно в состав каждого чипа входят 40 Гбайт сверхбыстрой памяти. Система уже доступна коммерческим заказчикам, а также различным научным организациям.

 Источник изображения: Cerebras Systems

Источник изображения: Cerebras Systems

Суперкомпьютер также использует 284 односокетных сервера с процессорами AMD EPYC 7713. Суммарное количество вычислительных ядер общего назначения составляет 18 176. Каждый из этих серверов несёт на борту 128 Гбайт оперативной памяти, NVMe-накопитель вместимостью 1,92 Тбайт и две сетевые карты 100GbE. Эти узлы отвечают за предварительную обработку информации.

 Источник: Cerebras Systems

Источник: Cerebras Systems

По заявлениям Cerebras, производительность системы превышает 1 Эфлопс на т.н. разреженных вычислениях и достигает 120 Пфлопс при обычных FP16-вычислениях. Это первый в мире суперкомпьютер, который обеспечивает практически идеальное линейное масштабирование при работе с GPT-моделями, в частности, GPT-3, GPT-J и GPT-NeoX. Иначе говоря, при каждом удвоении числа комплексов CS-2 время обучения моделей сокращается почти в два раза.

Суперкомпьютер смонтирован в дата-центре Colovore в Санта-Кларе (Калифорния, США). Стоимость системы составила приблизительно $30 млн, а на её развёртывание потребовалось всего три дня. Использовать ресурсы Andromeda могут одновременно несколько клиентов.

Постоянный URL: http://servernews.ru/1077382
10.11.2022 [17:15], Владимир Мироненко

HPE анонсировала недорогие, энергоэффективные и компактные суперкомпьютеры Cray EX2500 и Cray XD2000/6500

Hewlett Packard Enterprise анонсировала суперкомпьютеры HPE Cray EX и HPE Cray XD, которые отличаются более доступной ценой, меньшей занимаемой площадью и большей энергоэффективностью по сравнению с прошлыми решениями компании. Новинки используют современные технологии в области вычислений, интерконнекта, хранилищ, питания и охлаждения, а также ПО.

 Изображение: HPE

Изображение: HPE

Суперкомпьютеры HPE обеспечивают высокую производительность и масштабируемость для выполнения ресурсоёмких рабочих нагрузок с интенсивным использованием данных, в том числе задач ИИ и машинного обучения. Новинки, по словам компании, позволят ускорить вывода продуктов и сервисов на рынок. Решения HPE Cray EX уже используются в качестве основы для больших машин, включая экзафлопсные системы, но теперь компания предоставляет возможность более широкому кругу организаций задействовать супервычисления для удовлетворения их потребностей в соответствии с возможностями их ЦОД и бюджетом.

В семейство HPE Cray вошли следующие системы:

  • HPE Cray EX2500 с такой же архитектурой как у HPE Cray EX4000, самой быстрой системы экзафлопсного класса от HPE. Однако EX2500 на 24 % меньше, что позволит разместить его в корпоративном ЦОД. Новая система имеет 100% прямое жидкостное охлаждение.
  • HPE Cray XD2000 и XD6500 HPE со специализированными серверами с высокой плотностью размещения, созданные путём интеграции портфолио HPE и Cray. HPE Cray XD тоже совместимы с традиционными корпоративными ЦОД и дают возможность подобрать необходимую конфигурацию в зависимости от рабочей нагрузки.

Все три системы задействуют те же технологии, что и их старшие собратья: интерконнект HPE Slingshot, хранилище Cray Clusterstor E1000 и пакет ПО HPE Cray Programming Environment и т.д. Система HPE Cray EX2500 поддерживает процессоры AMD EPYC Genoa и Intel Xeon Sapphire Rapids, а также ускорители AMD Instinct MI250X. Модель HPE Cray XD6500 поддерживает чипы Sapphire Rapids и ускорители NVIDIA H100, а для XD2000 заявлена поддержка AMD Instinct MI210.

 Изображение: Intel

Изображение: Intel

В качестве примеров выгод от использования анонсированных суперкомпьютеров в разных отраслях компания назвала:

  • Ускорение вывода на рынок более безопасных и высокопроизводительных автомобилей: автопроизводители с помощью суперкомпьютеров смогут лучше моделировать и тестировать усовершенствования конструкции транспортных средств и моделировать столкновения, экономя деньги на краш-тестах и физических испытаниях;
  • Разработка материалов для упаковки: моделирование физических и химических процессов для ускорения создания альтернативных материалов может помочь в создании более качественной, экологичной упаковки для средств личной гигиены и потребительских товаров, и снизить затраты предприятий;
  • Ускорение разработки лекарств: учёные и фармацевтические лаборатории смогут лучше изучить химические взаимодействия, которые могут привести к созданию революционных средств для лечения сложных и даже ещё неизвестных заболеваний;
  • Принятие важных мгновенных решений на финансовых рынках: финансовые аналитики смогут использовать производительность суперкомпьютеров и возможности ИИ для создания подробной аналитики и передовых алгоритмов для прогнозирования критических тенденций на рынке, а также для выявления мошенничества и управления рисками.
Постоянный URL: http://servernews.ru/1077124
05.09.2022 [23:00], Алексей Степин

Tesla рассказала подробности о чипах D1 собственной разработки, которые станут основой 20-Эфлопс ИИ-суперкомпьютера Dojo

Компания Tesla уже анонсировала собственный, созданный в лабораториях компании процессор D1, который станет основой ИИ-суперкомпьютера Dojo. Нужна такая система, чтобы создать для ИИ-водителя виртуальный полигон, в деталях воссоздающий реальные ситуации на дорогах. Естественно, такой симулятор требует огромных вычислительных мощностей: в нашем мире дорожная обстановка очень сложна, изменчива и включает множество факторов и переменных.

До недавнего времени о Dojo и D1 было известно не так много, но на конференции Hot Chips 34 было раскрыто много интересного об архитектуре, устройстве и возможностях данного решения Tesla. Презентацию провел Эмиль Талпес (Emil Talpes), ранее 17 лет проработавший в AMD над проектированием серверных процессоров. Он, как и ряд других видных разработчиков, работает сейчас в Tesla над созданием и совершенствованием аппаратного обеспечения компании.

 Изображения: Tesla (via ServeTheHome)

Изображения: Tesla (via ServeTheHome)

Главной идеей D1 стала масштабируемость, поэтому в начале разработки нового чипа создатели активно пересмотрели роль таких традиционных концепций, как когерентность, виртуальная память и т.д. — далеко не все механизмы масштабируются лучшим образом, когда речь идёт о построении действительно большой вычислительной системы. Вместо этого предпочтение было отдано распределённой сети хранения на базе SRAM, для которой был создан интерконнект, на порядок опережающий существующие реализации в системах распределённых вычислений.

Основой процессора Tesla стало ядро целочисленных вычислений, базирующееся на некоторых инструкциях из набора RISC-V, но дополненное большим количеством фирменных инструкций, оптимизированных с учётом требований, предъявляемых ядрами машинного обучения, используемыми компанией. Блок векторной математики был создан практически с нуля, по словам разработчиков.

Набор инструкций Dojo включает в себя скалярные, матричные и SIMD-инструкции, а также специфические примитивы для перемещения данных из локальной памяти в удалённую, равно как и семафоры с барьерами — последние требуются для согласования работы c памятью во всей системе. Что касается специфических инструкций для машинного обучения, то они реализованы в Dojo аппаратно.

Первенец в серии, чип D1, не является ускорителем как таковым — компания считает его высокопроизводительным процессором общего назначения, не нуждающимся в специфических ускорителях. Каждый вычислительный блок Dojo представлен одним ядром D1 с локальной памятью и интерфейсами ввода/вывода. Это 64-бит ядро суперскалярно.

Более того, в ядре реализована поддержка многопоточности (SMT4), которая призвана увеличить производительность на такт (а не изолировать разные задачи друг от друга), поэтому виртуальную память данная реализация SMT не поддерживает, а механизмы защиты довольно ограничены в функциональности. За управление ресурсами Dojo отвечает специализированный программный стек и фирменное ПО.

64-бит ядро имеет 32-байт окно выборки (fetch window), которое может содержать до 8 инструкций, что соответствует ширине декодера. Он, в свою очередь, может обрабатывать два потока за такт. Результат поступает в планировщики, которые отправляют его в блок целочисленных вычислений (два ALU) или в векторный блок (SIMD шириной 64 байт + перемножение матриц 8×8×4).

У каждого ядра D1 есть SRAM объёмом 1,25 Мбайт. Эта память — не кеш, но способна загружать данные на скорости 400 Гбайт/с и сохранять на скорости 270 Гбайт/с, причём, как уже было сказано, в чипе реализованы специальные инструкции, позволяющие работать с данными в других ядрах Dojo. Для этого в блоке SRAM есть свои механизмы, так что работа с удалённой памятью не требуют дополнительных операций.

Что касается поддерживаемых форматов данных, то скалярный блок поддерживает целочисленные форматы разрядностью от 8 до 64 бит, а векторный и матричный блоки — широкий набор форматов с плавающей запятой, в том числе для вычислений смешанной точности: FP32, BF16, CFP16 и CFP8. Разработчики D1 пришли к использованию целого набора конфигурируемых 8- и 16-бит представлений данных — компилятор Dojo может динамически изменять значения мантиссы и экспоненты, так что система может использовать до 16 различных векторных форматов, лишь бы в рамках одного 64-байт блока данных он не менялся.

Как уже упоминалось, топология D1 использует меш-структуру, в которой каждые 12 ядер объединены в логический блок. Чип D1 целиком представляет собой массив размером 18×20 ядер, однако доступны лишь 354 ядра из 360 присутствующих на кристалле. Сам кристалл площадью 645 мм2 производится на мощностях TSMC с использованием 7-нм техпроцесса. Тактовая частота составляет 2 ГГц, общий объём памяти SRAM — 440 Мбайт.

Процессор D1 развивает 362 Тфлопс в режиме BF16/CFP8, в режиме FP32 этот показатель снижается до 22 Тфлопс. Режим FP64 векторными блоками D1 не поддерживается, поэтому для многих традиционных HPC-нагрузок данный процессор не подойдёт. Но Tesla создавала D1 для внутреннего использования, поэтому совместимость её не очень волнует. Впрочем, в новых поколениях, D2 или D3, такая поддержка может появиться, если это будет отвечать целям компании.

Каждый кристалл D1 имеет 576-битный внешний интерфейс SerDes с совокупной производительностью по всем четырём сторонам, составляющей 18 Тбайт/с, так что узким местом при соединении D1 он явно не станет. Этот интерфейс объединяет кристаллы в единую матрицу 5х5, такая матрица из 25 кристаллов D1 носит название Dojo training tile.

Этот тайл выполнен как законченный термоэлектромеханический модуль, имеющий внешний интерфейс с пропускной способностью 4,5 Тбайт/с на каждую сторону, совокупно располагающий 11 Гбайт памяти SRAM, а также собственную систему питания мощностью 15 кВт. Вычислительная мощность одного тайла Dojo составляет 9 Пфлопс в формате BF16/CFP8. При таком уровне энергопотребления охлаждение у Dojo может быть только жидкостное.

Тайлы могут объединяться в ещё более производительные матрицы, но как именно физически организован суперкомпьютер Tesla, не вполне ясно. Для связи с внешним миром используются блоки DIP — Dojo Interface Processors. Это интерфейсные процессоры, посредством которых тайлы общаются с хост-системами и на долю которых отведены управляющие функции, хранение массивов данных и т.п. Каждый DIP не просто выполняет IO-функции, но и содержит 32 Гбайт памяти HBM (не уточняется, HBM2e или HBM3).

DIP использует полностью свой транспортный протокол (Tesla Transport Protocol, TTP), разработанный в Tesla и обеспечивающий пропускную способность 900 Гбайт/с, а поверх Ethernet — 50 Гбайт/с. Внешний интерфейс у карточек — PCI Express 4.0, и каждая интерфейсная карта несёт пару DIP. С каждой стороны каждого ряда тайлов установлено по 5 DIP, что даёт скорость до 4,5 Тбайт/с от HBM-стеков к тайлу.

В случаях, когда во всей системе обращение от тайла к тайлу требует слишком много переходов (до 30 в случае обращения от края до края), система может воспользоваться DIP, объединённых снаружи 400GbE-сетью по топологии fat tree, сократив таким образом, количество переходов до максимум четырёх. Пропускная способность в этом случае страдает, но выигрывает латентность, что в некоторых сценариях важнее.

В базовой версии суперкомпьютер Dojo V1 выдаёт 1 Эфлопс в режиме BF16/CFP8 и может загружать непосредственно в SRAM модели объёмом до 1,3 Тбайт, ещё 13 Тбайт данных можно хранить в HBM-сборках DIP. Следует отметить, что пространство SRAM во всей системе Dojo использует единую плоскую адресацию. Полномасштабная версия Dojo будет иметь производительность до 20 Эфлопс.

Сколько сил потребуется компании, чтобы запустить такого монстра, а главное, снабдить его рабочим и приносящим пользу ПО, неизвестно — но явно немало. Известно, что система совместима с PyTorch. В настоящее время Tesla уже получает готовые чипы D1 от TSMC. А пока что компания обходится самым большим в мире по числу установленных ускорителей NVIDIA ИИ-суперкомпьютером.

Постоянный URL: http://servernews.ru/1073480
26.08.2022 [12:45], Алексей Степин

Интерконнект NVIDIA NVLink 4 открывает новые горизонты для ИИ и HPC

Потребность в действительно быстром интерконнекте для ускорителей возникла давно, поскольку имеющиеся шины зачастую становились узким местом, не позволяя «прокормить» данными вычислительные блоки. Ответом NVIDIA на эту проблему стало создание шины NVLink — и компания продолжает активно развивать данную технологию. На конференции Hot Chips 34 было продемонстрировано уже четвёртое поколение, наряду с новым поколением коммутаторов NVSwitch.

 Изображения: NVIDIA

Изображения: NVIDIA

Возможность использования коммутаторов для NVLink появилась не сразу, изначально использовалось соединение блоков ускорителей по схеме «точка-точка». Но дальнейшее наращивание числа ускорителей по этой схеме стало невозможным, и тогда NVIDIA разработала коммутаторы NVSwitch. Они появились вместе с V100 и предлагали до 50 Гбайт/с на порт. Нынешнее же, третье поколение NVSwitch и четвёртое поколение NVLink сделали важный шаг вперёд — теперь они позволяют вынести NVLink-подключения за пределы узла.

Так, совокупная пропускная способность одного чипа NVSwitch теперь составляет 3,2 Тбайт/с в обе стороны в 64 портах NVLink 4 (x2). Это, конечно, отразилось и на сложности самого «кремния»: 25,1 млрд транзисторов (больше чем у V100), техпроцесс TSMC 4N и площадь 294мм2. Скорость одной линии NVLink 4 осталась равной 50 Гбайт/с, но новые ускорители H100 имеют по 18 линий NVLink, что даёт впечатляющие 900 Гбайт/с. В DGX H100 есть сразу четыре NVSwitch-коммутатора, которые объединяют восемь ускорителей по схеме каждый-с-каждым и дополнительно отдают ещё 72 NVLink-линии (3,6 Тбайт/с).

При этом у DGX H100 сохраняются прежние 400G-адаптеры Ethernet/InfiniBand (ConnectX-7), по одному на каждый ускоритель, и пара DPU BlueField-3, тоже класса 400G. Несколько упрощает физическую инфраструктуру то, что для внешних NVLink-подключений используются OSFP-модули, каждый из которых обслуживает 4 линии NVLink. Любопытно, что электрически интерфейсы совместимы с имеющейся 400G-экосистемой (оптической и медной), но вот прошивки для модулей нужны будут кастомные.

Подключаются узлы DGX H100 к 1U-коммутатору NVLink Switch, включающему два чипа NVSwitch третьего поколения: 32 OSFP-корзины, 128 портов NVLink 4 и агрегированная пропускная способность 6,4 Тбайт/с. В составе DGX SuperPOD есть 18 коммутаторов NVLink Switch и 256 ускорителей H100 (32 узла DGX). Таким образом, можно связать ускорители и узлы 900-Гбайт/с каналом. Как конкретно, остаётся на усмотрение пользователя, но сама NVLink-сеть поддерживает динамическую реконфигурацию на лету.

Ещё одна особенность нового поколения NVLink — продвинутые аппаратные SHARP-движки, которые избавляют CPU/GPU от части работ по подготовке и предобработки данных и избавляющие саму сеть от ненужных передач. Кроме того, в NVLink-сети реализованы разделение и изоляция, брандмауэр, шифрование, глубокая телеметрия и т.д. В целом, новое поколение NVLink получило полуторакратный прирост в скорости обмена данными, а в отношении дополнительных сетевых функций он стал трёхкратным. Всё это позволит освоить новые класса HPC- и ИИ-нагрузок, однако надо полагать, что удовольствие это будет недешёвым.

Постоянный URL: http://servernews.ru/1072843
22.08.2022 [20:55], Алексей Степин

Китайский ускоритель Birentech BR100 готов бросить вызов NVIDIA A100

Как известно, Китай первым в мире успешно ввёл в эксплуатацию суперкомпьютеры экзафлопсного класса, но современная HPC-система практически немыслима без ускорителей. Однако и здесь китайские разработчики подготовили прорыв: на конференции Hot Chips 34 компания Birentech рассказала о чипе BR100, решении, которое может бросить вызов как AMD, так и NVIDIA.

Новинка базируется на архитектуре собственной разработки под кодовым названием Bi Liren. Это первый китайский ускоритель общего назначения, использующий чиплетную компоновку и поддерживающий PCI Express 5.0/CXL. Новые ускорители будут сопровождаться полноценной программной поддержкой, начиная с драйверов и библиотек и заканчивая популярными фреймворками, такими, как TensorFlow и PyTorch.

Источник: WCCFTech

Сложность BR100 внушает уважение: новый чип состоит из 77 млрд транзисторов, скомпонованных воедино с использованием 7-нм техпроцесса и технологии TSMC 2.5D CoWoS. Площадь чипа составляет 1074 мм2, правда, не очень понятно, идёт ли речь исключительно о кристалле, т.н. «вычислительном тайле», или о сборке в целом, поскольку в состав BR100 входит 64 Гбайт памяти HBM2e.

Источник: WCCFTech

Среди особенностей можно отметить наличие быстрого кеша объёмом 300 Мбайт (256 Мбайт L2) — для сравнения, у NVIDIA A100 он составляет всего 40 Мбайт, и даже у новейшего H100 он увеличен лишь до 50 Мбайт. Что касается ПСП, то она составляет 1,64 Тбайт/с.

Источник: WCCFTech

Модульная компоновка BR100 включает в себя два вычислительных тайла и четыре сборки HBM2e. Между собой кристаллы соединены интерконнектом с пропускной способностью 896 Гбайт/с, а для дальнейшего масштабирования в составе нового ускорителя предусмотрен фирменный интерконнект BLink (8 линий) с производительностью 2,3 Тбайт/с.

Источник: WCCFTech

Каждый из двух кристаллов несёт в себе по 16 потоковых вычислительных кластеров (SPC), а каждый такой кластер, в свою очередь, содержит 16 исполнительных блоков (EU). Каждый блок EU содержит 16 потоковых ядер V-Core и одно тензорное ядро T-Core, так что всего в составе BR100 имеется 8192 классических ядра и 512 тензорных. Каждый SPC имеет свой кеш L2 объёмом 8 Мбайт, суммарно 256 Мбайт на всю сборку BR100.

 Источник: WCCFTech

Источник: WCCFTech

Ядро V-Core имеет архитектуру SIMT (Single Instructions, Multiple Thread) и поддерживает вычисления в форматах INT16/32, FP16 и FP32. Тензорные ядра T-Core предназначены для выполнения операций типа MMA, свёртки и прочих, характерных для современных задач машинного обучения. Предельное количество потоков у BR100 в суперскалярном режиме — 128 тысяч.

 Источник: WCCFTech

Источник: WCCFTech

Компания-разработчик приводит некоторые цифры производительности для BR100: это 256 Тфлопс в режиме FP32, вдвое больше в режиме TF32+, 1024 Тфлопс в формате BF16 и целых 2048 Топс в режиме INT8. Это серьёзная заявка: с такими показателями BR100 должен опережать NVIDIA A100. Заявлено превосходство от 2,5х до 2,8х в зависимости от задачи и сценария.

Источник: WCCFTech

Любопытно, что BR100 несильно уступает NVIDIA H100 по количеству транзисторов (77 против 80 млрд), но, естественно, использование более грубого 7-нм техпроцесса против N4 у последней разработки NVIDIA означает и большее тепловыделение. Этот параметр у BR100 составляет 550 Вт в то время, как PCIe-вариант H100 укладывается в стандартные 350 Вт.

Источник: WCCFTech

Это не единственная новинка: в арсенале Birentech заявлен и менее мощный чип BR104. Он вдвое медленнее старшей модели по всем показателям и несёт 32 Гбайт памяти против 64, но в отличие от BR100, использует монолитный, а не чиплетный дизайн. На его основе будут выпущены ускорители в формате PCIe с TDP в районе 300 Вт, тогда как старшая версия будет доступна только в виде OAM-модуля.

Постоянный URL: http://servernews.ru/1072678
20.08.2022 [22:30], Алексей Степин

NVIDIA поделилась некоторыми деталями о строении Arm-процессоров Grace и гибридных чипов Grace Hopper

На GTC 2022 весной этого года NVIDIA впервые заявила о себе, как о производителе мощных серверных процессоров. Речь идёт о чипах Grace и гибридных сборках Grace Hopper, сочетающих в себе ядра Arm v9 и ускорители на базе архитектуры Hopper, поставки которых должны начаться в первой половине следующего года. Многие разработчики суперкомпьютеров уже заинтересовались новинками. В преддверии конференции Hot Chips 34 компания раскрыла ряд подробностей о чипах.

Grace производятся с использованием техпроцесса TSMC 4N — это специально оптимизированный для решений NVIDIA вариант N4, входящий в серию 5-нм процессов тайваньского производителя. Каждый кристалл процессорной части Grace содержит 72 ядра Arm v9 с поддержкой масштабируемых векторных расширений SVE2 и расширений виртуализации с поддержкой S-EL2. Как сообщалось ранее, NVIDIA выбрала для новой платформы ядра Arm Neoverse.

Источник: NVIDIA

Процессор Grace также соответствует ряду других спецификаций Arm, в частности, имеет отвечающий стандарту RAS v1.1 контроллер прерываний (Generic Interrupt Controller, GIC) версии v4.1, блок System Memory Management Unit (SMMU) версии v3.1 и средства Memory Partitioning and Monitoring (MPAM). Базовых кристаллов у Grace два, что в сумме даёт 144 ядра — рекордное количество как в мире Arm, так и x86.

Внутренняя организация кластеров ядр в Grace. Источник: NVIDIA

Внутренние блоки Grace соединяются посредством фабрики Scalable Coherency Fabric (SCF), вариации NVIDIA на тему сети CMN-700, применяемой в дизайнах Arm Neoverse. Производительность данного интерконнекта составляет 3,2 Тбайт/с. В случае Grace он предполагает наличие 117 Мбайт кеша L3 и поддерживает когерентность в пределах четырёх сокетов (посредством новой версии NVLink).

Но SCF поддерживает масштабирование. Пока что в «железе» она ограничена двумя блоками Grace, а это уже 144 ядра и 234 Мбайт L3-кеша. Ядра и кеш-разделы (SCC) рапределены по внутренней mesh-фабрике SCF. Коммутаторы (CSN) служат интерфейсами для ядер, кеш-разделов и остальными частями системы. Блоки CSN общаются непосредственно друг с другом, а также с контроллерами LPDDR5X и PCIe 5.0/cNVLink/NVLink C2C.

Блок-схема кристалла Grace. Источник: NVIDIA

В чипе реализована поддержка PCI Express 5.0. Всего контроллер поддерживает 68 линий, 12 из которых могут также работать в режиме cNVLink (NVLink с когерентностью). x16-интерфейс посредством бифуркации может быть превращен в два x8. Также на приведённой NVIDIA диаграмме можно видеть целых 16 двухканальных контроллеров LPDDR5x. Заявлена ПСП на уровне свыше 1 Тбайт/с для сборки (до 546 Гбайт/с на кристалл CPU).

 Источник: NVIDIA

Источник: NVIDIA

Основной же межчиповой связи NVIDIA видит новую версию NVLink — NVLink-C2C, которая в семь раз быстрее PCIe 5.0 и способна обеспечить двунаправленную скорость передачи данных на уровне до 900 Гбайт/с, будучи при этом в пять раз экономичнее. Удельное потребление у новинки составляет 1,3 пДж/бит, что меньше, нежели у AMD Infinity Fabric с 1,5 пДж/бит. Впрочем, существуют и более экономичные решения, например, UCIe (~0,5 пДж/бит).

Новый вариант NVLink обеспечит кластер на базе Grace Hopper единым пространством памяти. Источник: NVIDIA

NVLink-C2C позволяет реализовать унифицированный «плоский» пул памяти с общим адресным пространством для Grace Hopper. В рамках одного узла возможно свободное обращение к памяти соседей. А вот для объединения нескольких узлов понадобится уже внешний коммутатор NVSwitch. Он будет занимать 1U в высоту, и предоставлять 128 портов NVLink 4 с агрегированной пропускной способностью до 6,4 Тбайт/с в дуплексе.

 Источник: NVIDIA

Источник: NVIDIA

Производительность Grace также обещает быть рекордно высокой благодаря оптимизированной архитектуре и быстрому интерконнекту. Даже по предварительным цифрам, опубликованным NVIDIA, речь идёт о 370 очках SPECrate2017_int_base для одного кристалла Grace и 740 очках для 144-ядерной сборки из двух кристаллов — и это с использованием обычного компилятора GCC без тонких платформенных оптимизаций. Последняя цифра существенно выше результатов, показанных 128-ядерными Alibaba T-Head Yitian 710, также использующим архитектуру Arm v9, и 64-ядерными AMD EPYC 7773X.

Постоянный URL: http://servernews.ru/1072574
10.08.2022 [22:05], Владимир Мироненко

На пути к Aurora: запущен «тренировочный» суперкомпьютер Polaris

Аргоннская национальная лаборатория (ANL) Министерства энергетики США объявила о доступности суперкомпьютера Polaris, ранний вариант которого занял 14-е место в последней версии списка TOP500. Он будет использоваться для проведения научных исследований и в качестве испытательного стенда для 2-Эфлопс суперкомпьютера Aurora, запуск которой намечен на ближайшие месяцы. Правда, аппаратно Aurora и Polaris отличаются.

Созданная HPE система Polaris состоит из 560 узлов Apollo 6500, каждый из которых оснащён процессором AMD EPYC Milan, четырьмя ускорителями NVIDIA A100 (40 Гбайт) и 512 Гбайт DDR4-памяти. Эти узлы объединены в сеть интерконнектом HPE Slingshot 10 (осенью он будет обновлен до Slingshot 11) и подключены к сдвоенному 100-Пбайт Lustre-хранилищу (Grand и Eagle). Заявленная пиковая производительность должна составить 44 Пфлопс.

«Polaris примерно в четыре раза быстрее нашего суперкомпьютера Theta, что делает его самым мощным компьютером в Аргонне на сегодняшний день», — отметил Майкл Папка (Michael Papka), директор Argonne Leadership Computing Facility (ALCF). Он добавил, что возможности Polaris позволят пользователям выполнять моделирование, анализ данных и ИИ-задачи с такими масштабом и скоростью, которые были невозможны с предыдущими вычислительными системами.

 Фото: ANL

Фото: ANL

Помимо работы над подготовкой к запуску Aurora, суперкомпьютер Polaris будет обслуживать внутренние потребности лаборатории, например, работу с комплексом Advanced Photon Source (APS) X-ray. «Благодаря тесной интеграции суперкомпьютеров ALCF с APS, CNM и другими экспериментальными установками мы можем помочь ускорить проведение анализа данных и предоставить информацию, которая позволит исследователям управлять своими экспериментами в режиме реального времени», — заявил Майкл Папка.

Постоянный URL: http://servernews.ru/1071938
Система Orphus