Материалы по тегу: epyc
14.06.2023 [01:30], Игорь Осколков
AMD представила 128-ядерные EPYC Bergamo, а также EPYC Genoa-X с 1152 Мбайт L3-кешаAMD официально представила два новых, пока что очень небольших семейства серверных процессоров EPYC на базе архитектуры Zen 4. Это давно обещанные CPU серии EPYC 97x4, известные под кодовым именем Bergamo и рассчитанные на гиперскейлеров и облачных провайдеров, а также EPYC 9x84X Genoa-X с 3D V-Cache, которые предлагают до 1152 Мбайт L3-кеша и которые ориентированы на HPC-нагрузки. Ничего нового относительно архитектурных особенностей Bergamo компания не поведала. Более высокая плотность компоновки ядер Zen 4c достигнута, в частности, путём модификации кешей (они проще и меньше) и компромиссными решениями в отношении упаковки, частот и т.д. В итоге получается интересная картина — ядер в сравнении с EPYC Genoa (до 96 шт.) стало больше, а вот общее число транзисторов уменьшилось с 90 до 82 млрд. Показатель TDP сохранился на прежнем уровне. AMD говорит, что ядра Zen 4c примерно на треть меньше Zen 4: 2,48 мм2 против 3,84 мм2 (ядро + L2-кеш). Оба варианта производятся по 5-нм техпроцессу TSMC. В CCD теперь содержится 16 ядер вместо 8, а в самом процессоре теперь 8 CCD вместо 12. Центральный IO-мостик у Genoa и Bergamo предлагает одни и те же возможности: 128 линий PCIe 5.0 (CXL) и 12 каналов памяти DDR5-4800. При этом оба варианта совместимы не только на уровне сокета (SP5), но и ISA, и платформы целиком — достаточно обновления BIOS. В случае Bergamo компания, как и прежде, напирает на относительно низкую совокупную стоимость владения и на ещё более высокую энергоэффективность в сравнении с Genoa. Поскольку SMT на месте, в 2U4N-шасси с двухсокетными узлами теперь можно получить 2048 vCPU. Отдельный вопрос, как это всё ещё сбалансировать с точки зрения IO. Но в любом случае такое решение должно привлечь гиперскейлеров, среди которых была упомянута Meta✴, уже использующая сотни тысяч процессоров EPYC. Любопытно, что в пресс-релизе AMD сравнивает общую производительность Bergamo с Ampere Altra, утверждая, что в ключевых облачных нагрузках они в 3,7 раз быстрее. Кроме того, новинки в 2,7 раз энергоэффективнее конкурентов. При этом оба документа, описывающих условия тестирования, на момент написания публикации доступны не были. Возможно, как и в других тестах, речь идёт о 128-ядерных Altra Max, которые уже доступны у ключевых облачных провайдеров. По-видимому, в этой области AMD воспринимает как важного (если не ключевого) конкурента именно Ampere, а не Intel, с продукцией которой были показаны сравнения во время презентации. Так, старший AMD EPYC 9754 до 2,6 раз быстрее старшего же Intel Xeon 8490H (Sapphire Rapids), который предлагает всего 60 ядер при сравнимом TDP. До выхода Sierra Forest с E-ядрами (до 144 шт.) в следующем году Intel отвечать AMD нечем. А вот Ampere уже представила 192-ядерные (но без SMT) AmpereOne, которые, по слухам, уже давно поставляются избранным клиентам. Да и сама AMD заявляет, что Bergamo тоже уже отгружаются. Заодно AMD объявила о доступности EPYC Genoa-X (9x84X). Концептуально они повторяют Milan-X, то есть поверх каждого CCD в обычном Genoa располагается плитка V-Cache с 64 Мбайт L3-кеша (с небольшим штрафом при обращении). 12 CCD дают 768 Мбайт дополнительного кеша, а суммарно выходят умопомрачительные 1152 Мбайт L3-кеша на процессор. Выгоду от столь большого объёма кешей могут получить не все приложения. Речь в основном идёт об HPC, CFD, EDA и СУБД. При этом, что удивительно, AMD сравнивает новинки с «обычными» Intel Xeon Sapphire Rapids, а не с Intel Xeon Max, оснащённых 64 Гбайт набортной HBM2e-памяти (1,2 Тбайт/с) и ориентированных, в целом, на те же задачи — в таком случае они оказываются до 2,9 раз быстрее.
08.06.2023 [17:40], Алексей Степин
128-ядерные процессоры AMD EPYC Bergamo на базе Zen 4c получили «удвоенные» чиплеты и высокую плотность компоновкиСреди требований, накладываемых к процессору для облачных серверов, числится максимизация производительности в пересчёте на процессорный разъём. В связи с рядом ограничений, в том числе, физического характера, рост этого показателя замедлился. Поэтому крайне важны, чтобы новые чипы могли повысить энергоэффективность и снизить совокупную стоимость владения инфраструктурой. AMD впервые в истории готовится представить x86-процессор, изначально созданный для гиперскейлеров — EPYC Bergamo. В основе новинок лежит оптимизированная архитектура Zen 4 — Zen 4c. Логически она не отличается от прародительницы, но доработки «кремния» позволили компании выпустить 128-ядерный процессор в том же форм-факторе, что и 96-ядерный EPYC Genoa. В качестве I/O-модуля используется тот же блок Floyd, располагающий 128 линиями PCI Express 5.0 и прочими характеристиками, свойственными процессорам AMD в конструктиве SP5. SemiAnalysis провёл исследование отличий Genoa и Bergamo. Bergamo включает всего 8 модулей CCD (Vindhya), в то время как Genoa требует 12 (Durango) даже с учетом существенно меньшего количества ядер — в один CCD теперь умещается 16 ядер против 8 (два CCX). Тем не менее, общий объём кеша L3 у новинки меньше, 256 Мбайт против 384 Мбайт. Также снижена с 3,7 до 3,1 ГГц максимальная тактовая частота. Логика на кристалле упакована более плотно, уменьшено количество физических разделов (partitions), применены менее производительные двухпортовые ячейки SRAM 6T (8T у Genoa). Также процессоры лишились TSV-контактов, так что поддержки 3D V-Cacne Bergamo лишены изначально. Первыми в серии станут 128-ядерный EPYC 9745 и 112-ядерный EPYC 9734. Оба процессора используют 12 каналов DDR5-4800 с совокупной пропускной способностью 460 Гбайт/с. Теплопакет удалось удержать в прежних 360–400 Вт. Возможен выпуск кастомных версий, учитывающих потребности крупных облачных провайдеров, но сколько и каких модифицированных Bergamo будет произведено, пока неизвестно.
05.06.2023 [12:28], Сергей Карасёв
Процессоры AMD EPYC Rome перестают функционировать через 1044 дня непрерывной работыСерверные процессоры AMD EPYC 7002 (Rome), по сообщению ресурса Tom's Hardware, «зависают» спустя 1044 дня непрерывной работы — это приблизительно 2,86 года. После этого требуется перезагрузка сервера для восстановления его нормального функционирования. Проблема связана с тем, что ядро названных чипов не может выйти из энергосберегающего режима CC6. Говорится, что конкретные сроки возникновения сбоя могут варьироваться: они зависят от функции Spread Spectrum и опорной частоты REFCLK (используется процессором для отслеживания времени). ![]() Источник изображения: AMD Однако пользователь Reddit с ником acid_migrain говорит, что на самом деле проблема проявляется через 1042 суток и примерно 12 часов, а не 1044 дня, как предупреждает сама AMD. Дело в том, что счётчик TSC (Time Stamp Counter), работающий на частоте 2800 МГц, зависает при значении 0x3800000000000000. Это 2800 × 106 × 1042,5, то есть, спустя 1042 дня и 12 часов после начала отсчёта. «Здесь слишком много нулей, чтобы это было совпадением», — отмечает acid_migrain. AMD не планирует исправлять ошибку. Избежать сбоя, как уже отмечалось, можно путём периодической перезагрузки сервера. Второй вариант — отключить возможность перехода в состояние CC6. Наблюдатели говорят, что данная особенность EPYC Rome вряд ли будет критична для большинства пользователей: почти три года непрерывной работы — это большой срок, в течение которого, скорее всего, будут выполняться перезагрузки в связи с техническим обслуживанием или обновлениями.
03.06.2023 [15:15], Сергей Карасёв
Дебютировал 4U-сервер ASUS ESC8000A-E12P: два чипа AMD EPYC 9004 и до восьми GPUКомпания ASUS привезла на выставку Computex 2023 сервер ESC8000A-E12P в форм-факторе 4U. Эта GPU-платформа рассчитана на решение задач в области ИИ и HPC: возможна установка восьми полноразмерных двухслотовых ускорителей с интерфейсом PCIe 5.0 x16. Сервер рассчитан на два процессора AMD EPYC 9004 (Genoa) с показателем TDP до 400 Вт. Доступны 24 слота для модулей оперативной памяти DDR5-4800/4400 суммарным объёмом до 6 Тбайт. Возможны два варианта исполнения сервера: с четырьмя тыльными слотами PCIe 5.0 x16 или с тремя слотами PCIe 5.0 x16 и разъёмом OCP3.0 NIC. Во фронтальной части в обоих случаях находится один слот PCIe 5.0 x16. Во фронтальной части находятся восемь отсеков для LFF-накопителей с возможностью горячей замены. Кроме того, может быть установлен SSD формата M.2 22110 с интерфейсом PCIe 3.0 x4. В зависимости от модификации присутствуют два порта 10GbE или 1GbE, а также выделенный сетевой порт управления. В числе опций — контроллер Broadcom MegaRAID 9560-16i, Broadcom MegaRAID 9540-8i, ASUS PIKE II 3008 8-port HBA и ASUS PIKE II 3108 8-port HW RAID. ![]() Есть два порта USB 3.2 Gen1, последовательный порт и коннектор D-Sub. Допускается развёртывание системы воздушного и жидкостного охлаждения. Габариты составляют 800 × 440 × 174,5 мм. Устанавливаются три или четыре блока питания мощностью до 3000 Вт с сертификатом 80 PLUS Titanium. Сервер может использоваться в температурном диапазоне от +10 до +35 °C.
02.06.2023 [16:19], Сергей Карасёв
ASUS анонсировала сервер RS500A-E12-RS12U: AMD EPYC 9004 и 16 накопителей SFF в 1U-шассиКомпания ASUS в ходе выставки Computex 2023 представила сервер RS500A-E12-RS12U, предназначенный для поддержания повседневных бизнес-нагрузок. Устройство, выполненное в форм-факторе 1U, использует аппаратную платформу AMD с возможностью установки одного процессора EPYC 9004 (Genoa). Поддерживается работа с чипами в исполнении Socket SP5 (LGA 6096) с показателем TDP до 400 Вт. Доступны 24 слота для модулей памяти DDR5-4800/4400/4000/3600 суммарным объёмом до 6 Тбайт. Предусмотрены три слота PCIe 5.0 x16 и разъём OCP 3.0. Во фронтальной части расположены 12 отсеков для SFF-накопителей SATA/SAS/NVMe. Опционально могут быть добавлены четыре внутренних устройства SFF SATA/NVMe. Кроме того, есть два коннектора для твердотельных модулей M.2. Сервер располагает двухпортовым сетевым контроллером 1GbE на базе Intel I350-AM2 и выделенным сетевым портом управления. Сзади расположены два разъёма USB 3.2 Gen1, интерфейс D-Sub и гнёзда RJ-45 для сетевых кабелей. Габариты составляют 842,5 × 449 × 43,85 мм. Задействованы два блока питания мощностью 1600 Вт с сертификатом 80 PLUS Titanium или 80 PLUS Platinum. Система может эксплуатироваться при температурах от +10 до +35 °C.
14.11.2022 [00:00], Игорь Осколков
Игра по новым правилам: AMD представила Genoa, четвёртое поколение серверных процессоров EPYCВсего за десять лет AMD совершила почти невозможное — практически полностью потеряла серверный рынок, а теперь не просто успешно его отвоёвывает, но и предлагает комплексное портфолио решений. Анонс четвёртого поколения процессоров EPYC под кодовым именем Genoa — это не технологическая победа над Intel, поскольку AMD даже не думала бороться с Sapphire Rapids и уж тем более с Ice Lake-SP, а ориентировалась на Granite Rapids. Но годовая задержка с выпуском Sapphire Rapids позволила AMD не только в более спокойном темпе доделывать чипы Genoa, которые вышли на полгода позже, чем задумывалось ранее, но и поработать с разработчиками и заказчиками. Компании удалось вернуть их доверие — победа в умах гораздо важнее, чем просто технологическое превосходство. А оно неоспоримо. EPYC Genoa заключены в корпус 72×75 мм, содержат до 90 млрд транзисторов и состоят из 13 чиплетов: 12 CCD, изготовленных по 5-нм техпроцессу TSMC плюс один, изрядно увеличившийся в размерах, IO-блок, сделанный там же, но уже по 6-нм нормам. Отказ от услуг GlobalFoundries, которая так и не смогла освоить тонкие техпроцессы, случился как нельзя кстати, поскольку IO-блок становится крайне важным компонентом при таком количестве ядер, которые необходимо вовремя накормить данными. И Genoa интересны в первую очередь с точки зрения полноты и разнообразия IO, а не рекордного количества ядер. IO-чиплет оснащён новыми SerDes-блоками, которые обслуживают и PCIe 5.0, и Infinity Fabric 3.0 (IF/GMI3). Формально каждому чипу полагается 128 линий PCIe 5.0, но реальная конфигурация чуть сложнее. Во-первых, у каждого чипа есть ещё восемь (2 x4) бонусных линий PCIe 3.0 для подключения нетребовательных устройств и обвязки, но в 2S-конфигурации таких линий будет только 12. Во-вторых, для 2S можно задействовать три (3Link) или четыре (4Link) IF-подключения, получив 160 или 128 свободных линий PCIe 5.0 соответственно. В-третьих, каждый root-комплекс x16 может быть поделён между девятью устройствами (вплоть до x8 + восемь x1). Часть линий можно отдать на SATA (до 32 шт.), хотя это довольно расточительно. Но главное не это! Из 128 линий 64 поддерживают в полном объёме CXL 1.1 и частично CXL 2.0 Type 3, причём возможна бифуркация вплоть до x4. Ради такой поддержки CXL выход Genoa задержался на два квартала, но оно того определённо стоило — к процессору можно подключать RAM-экспандеры. И решения SK Hynix уже валидированы для новой платформы. CXL-память будет выглядеть как NUMA-узел (без CPU) — задержки обещаны примерно те же, что и при обращении к памяти в соседнем сокете, а пропускная способность одного CXL-подключения x16 почти эквивалентна двум каналам DDR5. При этом для CXL-памяти прозрачно поддерживаются всё те же функции безопасности, включая SME/SEV/SNP (теперь ключей стало аж 1006, а алгоритм обновлён до 256-бит AES-XTS). Отдельно для CXL-памяти внедрена поддержка SMKE (secure multi-key encryption), с помощью которой гипервизор может оставлять зашифрованными выбранные области SCM-устройств (до 64 ключей) между перезагрузками. Такая гибкость при работе с памятью крайне важна для тех же гиперскейлеров. DDR5 по сравнению с DDR4 вчетверо плотнее, вполовину быстрее и… пока значительно дороже. И здесь AMD снова пошла им навстречу, добавив поддержку 72-бит памяти, а не только стандартной 80-бит, сохранив и расширив механизмы коррекции ошибок. 10-% разница в количестве DRAM-чипов при сохранении той же ёмкости на масштабах в десятки и сотни тысяч серверов выливается в круглую сумму. Кроме того, в Genoa сглажена разница в производительности между одно- и двухранговыми модулями с 25 % (в случае Milan) до 4,5 %. Что примечательно, AMD удалось сохранить сопоставимый уровень задержки обращений к памяти между поколениями CPU: 118 нс против 108 нс, из которых только 3 нс приходится на IO-блок, а 10 нс уже на саму память. Теоретическая пиковая пропускная способность памяти составляет 460,8 Гбайт/с на сокет. Однако тут есть нюансы. Genoa имеет 12 каналов памяти DDR5-4800, которые способны вместить до 6 Тбайт RAM. Однако сейчас фактически доступен только режим 1DPC, а вот 2DPC, судя по всему, появится только в следующем году. Genoa поддерживает модули (3DS) RDIMM и предлагает чередование с шагом в 2, 4, 6, 8, 10 или 12 каналов. Каждый чип можно разбить на два (NPS2) или четыре (NPS4) равных NUMA-домена, а при большом желании и «прибить» L3-кеш к ядрам в том же CCD, получив уже 12 доменов. Но, по словам AMD, это нужно лишь в редких случаях, чтобы выжать ещё несколько процентов производительности. И это снова возвращает нас к особенностям IO-блока. Дело в том, что у каждого CCD есть сразу два GMI-порта. Но в конфигурациях с 8 и 12 CCD используется только один из них, а вот в случае 4 CCD — оба. Интересно, задействует ли AMD «лишние» порты для подключения других блоков. Впрочем, AMD, имея столь гибкие возможности конфигурации моделей, ограничилась относительно скромным начальным набором CPU, которые включает всего 18 моделей с числом ядер от 16 до 96, из которых четыре имеют индекс P (односокетные, чуть дешевле) и четыре — F (выше частота, больше объём L3-кеша). Модельный ряд условно делится на три группы: повышенная производительность на ядро (F-серия), повышенная плотность ядер и повышенный показатель TCO (с относительно малым количеством ядер). На первый взгляд может показаться, что и цены на новинки заметно выросли, но это не совсем так. Например, у топовых моделей условная стоимость одного ядра (а их стала в полтора раза больше) так и крутится около «магического» значения в $123. Но с учётом возросшей производительности на ценовую политику AMD просто грех жаловаться. Прирост IPC между Zen3 и Zen4 составил 14 %, в том числе благодаря увеличению L2-кеша до 1 Мбайт на ядро (L1 и L3 остались без изменений), но не только. Есть и другие улучшения. Например, обновлённый контроллер прерываний AVIC позволяет практически полностью насытить не только 200G, но 400G NIC. С учётом чуть возросших частот и просто катастрофической разнице в количестве ядер топовый вариант Genoa не только значительно обгоняет Milan, но и в два-три раза быстрее старшего Ice Lake-SP. Дело ещё в и том, что Genoa обзавелись поддержкой AVX-512, в том числе инструкций VNNI (DL Boost), которыми так долго хвасталась Intel, а также BF16. Но реализация сделана иначе. У Intel используются «полноценные» 512-бит блоки, дорогие с точки зрения энергопотребления и затрат кремния. AMD же пошла по старому пути, используя 256-бит операции и несколько циклов, что позволяет не так агрессивно сбрасывать частоты. Переход на новый техпроцесс, а также обновлённые подсистемы мониторинга и управления питанием позволили сохранить TDP в разумных пределах от 200 Вт до 360 Вт (cTDP до 400 Вт), что всё ещё позволяет обойтись воздушным охлаждением — всего + 80 Вт для старших процессоров при полуторакратном росте числа ядер. Таким образом, AMD имеет полное право заявлять, что Genoa лидирует по производительности, плотности размещения вычислительных мощностей, энергоэффективности и, в целом, по уровню TCO. У Intel же пока преимущество в более высокой доступности продукции в сложившейся геополитической обстановке. Отдельный вопрос, как AMD будет распределять имеющиеся мощности по выпуску Genoa между гиперскейлерами, корпоративным сектором и HPC-сегментом. Впрочем, компания в любом случае меняет рынок, иногда неожиданным образом. В частности, VMware, которая когда-то из-за EPYC изменила политику лицензирования, была вынуждена дополнительно оптимизировать свои продукты для Genoa. В конце концов, где вы раньше видели 2S-платформу со 192 ядрами и 384 потоками?
10.06.2022 [03:30], Игорь Осколков
AMD анонсировала серверные процессоры EPYC Genoa-X, Siena и TurinНа прошедшем этим вечером отчётном мероприятии Financial Analysts Day 2022 компания AMD поделилась планами по дальнейшему развитию серверных процессоров EPYC. Речь шла как об уже анонсированных продуктах, так и о совершенно новых, предназначенных для неосвоенных ранее компанией сегментов. Наиболее значимым, хотя и наименее детальным, стал официальный анонс пятого поколения AMD EPYC под кодовым именем Turin (EPYC 7005), которое должно появиться до конца 2024 года. Они будут основаны на существенно переработанной архитектуре Zen 5 и изготавливаться по смешанному 3- и 4-нм техпроцессу. Обещано три разновидности кристаллов: обычные, с 3D V-Cache и «облачные» (Zen 5c), оптимизированные для повышения плотности размещения. Важно тут то, что таким образом сохранится преемственность между поколениями, что определённо порадует заказчиков. Но в ближайшее время нас ждёт выход AMD EPYC Genoa, который должен состояться в IV квартале текущего года. Эти 5-нм процессоры получат до 96 ядер Zen 4, 12 каналов DDR5, поддержку PCIe 5.0 и CXL. Причём сейчас уже явно говорится о возможности расширения системной памяти с помощью CXL. Переход на новый техпроцесс и увеличившееся в 1,5 раза количество ядер дали прирост производительности до +75% (в пример приводится тест Java SPECjbb). Для Genoa потребуется новый сокет SP5 (LGA6096). Он же будет готов принять ещё два варианта процессоров. Первый — это новенький Genoa-X, по названию которого легко догадаться, что это тот же Genoa (тоже до 96 ядер), снабжённый расширенным L3-кешем 3D V-Cache (от 1 Гбайт и более). Как и Milan-X, он будет ориентирован на специфический класс нагрузок, которые выигрывают от увеличения доступного объёма кеша. Это, например, расчётные задачи и СУБД. Genoa-X появятся в 2023 году. Тогда же стоит ждать и особую серию Bergamo. Эти процессоры, как и было обещано ранее, получат до 128 ядер (и 256 потоков), сохранив совместимость с сокетом SP5. Основаны они будут на 5-нм ядрах Zen 4c, который чем-то напоминают E-ядра в исполнении Intel. Однако набор команд у Zen 4c будет одинаков с Zen 4. Деталей устройства c-ядер AMD снова не раскрыла, но можно предположить, что у них переработана иерархия кешей. Предназначены они для гиперскейлеров, которым важна плотность размещения ресурсов, а не только производительность В 2023 году появятся и «малые» EPYC’и под кодовым названием Siena. Они оптимизированы с точки зрения энергоэффективности и предлагают до 64 ядер Zen 4. Siena ориентированы на периферийные вычисления и телеком-сегмент. Подробностей о них пока тоже мало. Не исключено, что мы увидим и гибриды наподобие Ice Lake-D, включающие интегрированные «умные» сетевые контроллеры. Существенным для всех новинок станет использование архитектуры Zen 4 (4 и 5 нм), которая, помимо ожидаемого прироста производительности, получит новые возможности. Среди них — поддержка AVX-512 (возможно, не самого полного набора) и новых инструкций для ИИ-нагрузок, которыми Intel хвасталась в течение нескольких лет. Но что ещё более важно, Zen 4 получат четвёртое поколение интерконнекта Infinity Architecture, который позволит более плотно связать различные чиплеты, причём и на уровне «кремния» (2.5D- и 3D-упаковка). А это открывает путь к эффективной компоновке различных функциональных модулей с поддержкой когерентности на уровне всего чипа — AMD подтвердила возможность интеграции FPGA Xilinx и IP-блоков сторонних компаний. Новый интерконнект также совместим с CXL 2.0, что важно для работы с памятью, а будущие версии получат поддержку CXL 3.0 и UCIE. Именно четвёртое поколение Infinity позволило AMD создать свои первые серверные APU Instinct MI300.
30.05.2022 [10:00], Игорь Осколков
Июньский TOP500: есть экзафлопс!59-я редакция TOP500, публичного рейтинга самых производительных суперкомпьютеров мира, стала наиболее знаменательной за последние 14 лет, поскольку официально был преодолён экзафлопсный барьер. Путь от петафлопса оказался долгим — первой петафлопсной системой стал суперкомпьютер IBM Roadrunner, и произошло это аж в 2008 году. Но минимальным порогом для попадания в TOP500 эта отметка стала только в 2019 году. Как и было обещано, официально и публично отметку в 1 Эфлопс в бенчмарке HPL на FP64-вычислениях первым преодолел суперкомпьютер Frontier — его устоявшаяся производительность составила 1,102 Эфлопс при теоретическом пике в 1,686 Эфлопс. Система на платформе HPE Cray EX235a использует оптимизированные 64-ядерные процессоры AMD EPYC Milan (2 ГГц), ускорители AMD Instinct MI250X и фирменный интерконнект Slingshot 11-го поколения. Система имеет суммарно 8 730 112 ядер, потребляет 21,1 МВт и выдаёт 52,23 Гфлопс/Вт, что делает её второй по энергоэффективности в мире. Впрочем, первое место в Green500 по данному показателю всё равно занимает тестовый кластер в составе всё того же Frontier: 120 832 ядра, 19,2 Пфлопс, 309 кВт, 62,68 Гфлопс/Вт. Третье и четвёртое места достались европейским машинам LUMI и Adastra, новичкам TOP500, которые по «железу» идентичны Frontier, но значительно меньше. Да и разница в Гфлопс/Вт между ними минимальна. Скопом они сместили предыдущего лидера — экзотичную японскую систему MN-3 от Preferred Networks. Японская система Fugaku, лидер по производительности в течение двух последних лет, сместилась на второе место TOP500. Третье место у финской системы LUMI с показателем производительности 151,9 Пфлопс — обратите внимание, насколько велик разрыв в первой тройке машин. Наконец, в Топ-10 последнее место занял новичок Adastra (46,1 Пфлопс), который расположен во Франции. В бенчмарке HPCG всё ещё лидирует Fugaku (16 Пфлопс), но, судя по всему, только потому, что для Frontier данных пока нет. Ну и потому, что результат суперкомпьютера LUMI, который почти на порядок медленнее Frontier, в HPCG составляет 1,94 Пфлопс. Наконец, в HPL-AI Frontier также отобрал первенство у Fugaku — 6,86 Эфлопс в вычислениях смешанной точности против 2 Эфлопс. В общем, у Frontier полная победа по всем фронтам, и эту машину можно назвать не только самой быстрой в мире, но первой по-настоящему экзафлопсной системой. Если, конечно, не учитывать неофициальные результаты OceanLight и Tianhe-3 из Поднебесной, которые в TOP500 никто не заявил. Число китайских систем в нынешнем рейтинге осталось прежним (173 шт.), тогда как США «ужались» со 150 до 127 шт. Российских систем в списке всё так же семь. Лидерами по числу поставленных систем остаются Lenovo, HPE и Inspur, а по их суммарной производительности — HPE, Fujitsu и Lenovo. С другой стороны, массовых изменений и не было — в нынешнем списке всего около сорока новых систем. Однако нельзя не отметить явный прогресс AMD — да, чуть больше трёх четвертей машин из списка используют процессоры Intel, но AMD удалось за полгода отъесть около 4 %. При этом AMD EPYC Milan присутствует в более чем трёх десятках систем, а доля Intel Xeon Ice Lake-SP вдвое меньше, хотя эти процессоры появились практически одновременно. Ускорители ожидаемо стали использовать больше — они применяются в 170 системах (было 150). Подавляющее большинство приходится на решения NVIDIA разных поколений, но и для новых Instinct MI250X нашлось место в восьми машинах. Ну а в области интерконнекта Infiniband потихоньку догоняет Ethernet: 226 машин против 196 + ещё 40 с Omni-Path + редкие проприетарные решения.
08.11.2021 [20:00], Игорь Осколков
AMD анонсировала процессоры EPYC Milan-X с 3D V-Cache: 804 Мбайт кеша и 64 ядра Zen3AMD анонсировала серию своих серверных процессоров под кодовым названием Milan-X. Новинки являются развитием EPYC 7003 (Milan), представленных весной этого года, и рассчитаны в первую очередь на высокопроизводительные вычисления (HPC). Главным же отличием от «обычных» Milan станет резко увеличенный объём кеш-памяти, что позволило AMD снова назвать свои процессоры самими быстрыми в мире. ![]() AMD EPYC Milan-X с 3D V-Cache (Здесь и ниже изобржаения AMD) Откуда берётся цифра в 804 Мбайт? Математика простая. На каждое ядро Zen3 приходится по 32 Кбайт L1-кеша для инструкций и данных + 512 Кбайт L2-кеша. На восемь ядер в CCX-комплексе приходится 32 Мбайт общего L3-кеша. И вот к ним добавляются ещё 64 Мбайт 3D V-Cache — в максимальной конфигурации на 8 CCX получается суммарно 768 Мбайт 3D V-Cache в дополнение к иерархии нижележащих кешей. Таким образом, конкретно по этому показателю побит рекорд IBM z15, хотя данный CPU ориентирован на совсем другие задачи. А вот среди x86-64 равных Milan-X сейчас нет. Более того, по словам AMD, реализация 3D V-Cache на текущий момент является уникальной в индустрии. Дополнительный кеш имеет непосредственно подключение к CCX по медным каналами, что позволяет значительно повысить плотность упаковки и энергоэффективность, снизить задержки и улучшить температурный режим. Правда, детальные характеристики V-Cache пока не приводятся. ![]() Что важно, новинки будут совместимы с имеющимися SP3-платформами для Milan, что упростит тестирование и валидацию — для них будет выпущено обновление BIOS. Увы, пока данные по частотам, TDP и цене компания не приводит — выпуск Milan-X запланирован на I квартал 2022 года. Но в сносках к презентации, в частности, упоминаются не только 64-ядерные Milan-X, но и 16-ядерные. Надо полагать, что такие «бутерброды» будут дороже обычных CCX, поскольку здесь цена брака будет выше. Также заявлена совместимость с имеющимся ПО, но и с разработчиками уже ведётся активная работа по дополнительной оптимизации их решений. Наибольшую выгоду от увеличенного кеша получат нагрузки, для которых критична скорость работы с памятью и задержки доступа. Среди таковых AMD упоминает метод конечных элементов, структурный анализ, вычислительную гидродинамику и автоматизированные системы проектирования электроники (EDA). Для последних на примере Synopsys VCS рост производительности составил 66%.
28.05.2021 [00:33], Владимир Мироненко
Perlmutter стал самым мощным ИИ-суперкомпьютером в мире: 6 тыс. NVIDIA A100 и 3,8 ЭфлопсВ Национальном вычислительном центре энергетических исследований США (NERSC) Национальной лаборатории им. Лоуренса в Беркли состоялась торжественная церемония, посвящённая официальному запуску суперкомпьютера Perlmutter, также известного как NERSC-9, созданного HPE в партнёрстве с NVIDIA и AMD. Это самый мощный в мире ИИ-суперкомпьютер, базирующийся на 6159 ускорителях NVIDIA A100 и примерно 1500 процессорах AMD EPYC Milan. Его пиковая производительность в вычислениях смешанной точности составляет 3,8 Эфлопс или почти 60 Пфлопс в FP64-вычислениях. Perlmutter основан на платформе HPE Cray EX с прямым жидкостным охлаждением и интерконнектом Slingshot. В состав системы входят как GPU-узлы, так и узлы с процессорами. Для хранения данных используется файловая система Lustre объёмом 35 Пбайт скорость обмена данными более 5 Тбайт/с, которая развёрнута на All-Flash СХД HPE ClusterStor E1000 (тоже, к слову, на базе AMD EPYC). Установка Perlmutter разбита на два этапа. На сегодняшней презентации было объявлено о завершении первого (Phase 1) этапа, который начался в ноябре прошлого года. В его рамках было установлено 1,5 тыс. вычислительных узлов, каждый из которых имеет четыре ускорителя NVIDIA A100, один процессор AMD EPYC Milan и 256 Гбайт памяти. На втором этапе (Phase 2) в конце 2021 года будут добавлены 3 тыс. CPU-узлов c двумя AMD EPYC Milan и 512 Гбайт памяти., а также ещё ещё 20 узлов доступа и четыре узла с большим объёмом памяти. ![]() NERSC Также на первом этапе были развёрнуты служебные узлы, включая 20 узлов доступа пользователей, на которых можно подготавливать контейнеры с приложениями для последующего запуска на суперкомпьютере и использовать Kubernetes для оркестровки. Среда разработки будет включать NVDIA HPC SDK в дополнение к наборам компиляторов CCE (Cray Compiling Environment), GCC и LLVM для поддержки различных средств параллельного программирования, таких как MPI, OpenMP, CUDA и OpenACC для C, C ++ и Fortran. Сообщается, что для Perlmutter готовится более двух десятков заявок на вычисления в области астрофизики, прогнозирования изменений климата и в других сферах. Одной из задач для новой системы станет создание трёхмерной карты видимой Вселенной на основе данных от DESI (Dark Energy Spectroscopic Instrument). Ещё одно направление, для которого задействуют суперкомпьютер, посвящено материаловедению, изучению атомных взаимодействий, которые могут указать путь к созданию более эффективных батарей и биотоплива. |
|