Материалы по тегу: d-matrix

20.01.2025 [07:53], Владимир Мироненко

SRAM, да и только: d-Matrix готовит ИИ-ускоритель Corsair

Стартап d-Matrix создал ИИ-ускоритель Corsair, оптимизированный для быстрого пакетного инференса больших языковых моделей (LLM). Архитектура ускорителя основана на модифицированных ячейках SRAM для вычислений в памяти (DIMC), работающих на скорости порядка 150 Тбайт/с. Новинка, по словам компании, отличается производительностью и энергоэффективностью, пишет EE Times. Массовое производство Corsair начнётся во II квартале. Среди инвесторов d-Matrix — Microsoft, Nautilus Venture Partners, Entrada Ventures и SK hynix.

d-Matrix фокусируется на пакетном инференсе с низкой задержкой. В случае Llama3-8B сервер d-Matrix (16 четырёхчиплетных ускорителей в составе восьми карт) может производить 60 тыс. токенов/с с задержкой 1 мс/токен. Для Llama3-70B стойка d-Matrix (128 чипов) может производить 30 тыс. токенов в секунду с задержкой 2 мс/токен. Клиенты d-Matrix могут рассчитывать на достижение этих показателей для размеров пакетов порядка 48–64 (в зависимости от длины контекста), сообщила EE Times руководитель отдела продуктов d-Matrix Шри Ганесан (Sree Ganesan).

 Источник изображений: d-Matrix

Источник изображений: d-Matrix

Производительность оптимизирована для исполнения моделей в расчёте до 100 млрд параметров на одну стойку. По словам Ганесан, это реалистичный сценарий использования LLM. В таких сценариях решение d-Matrix обеспечивает 10-кратное преимущество в интерактивности (время до получения токена) по сравнению с решениями на базе традиционных ускорителей, таких как NVIDIA H100. Corsair ориентирован на модели размером менее 70 млрд параметров, подходящих для генерации кода, интерактивной генерации видео или агентского ИИ, которые требуют высокой интерактивности в сочетании с пропускной способностью, энергоэффективностью и низкой стоимостью.

Ранние версии архитектуры d-Matrix использовали MAC-блоки на базе SRAM-ячеек, дополненных большим количеством транзисторов для операций умножения. Сложение же выполнялось в аналоговом виде с использованием разрядных линий, измерения тока и аналого-цифрового преобразования. В 2020 году компания выпустила чиплетную платформу Nighthawk на основе этой архитектуры. «[Nighthawk] продемонстрировал, что мы можем значительно повысить точность по сравнению с традиционными аналоговыми решениями, но мы всё ещё отстаем на пару процентных пунктов от традиционных решений типа GPU», — сказал EE Times генеральный директор d-Matrix Сид Шет (Sid Sheth).

Однако потенциальным клиентам не понравилось, что при таком подходе возможно снижение точности, так что в Corsair компания вынужденно сделала выбор в пользу полностью цифрового сумматора. ASIC d-Matrix включает четыре чиплета, каждый из которых содержит по четыре вычислительных блока, объединённых посредством DMX Link по схеме каждый-с-каждым, и по одному планировщику и RISC-V ядру. Внутри каждого вычислительного блока есть 16 DIMC-ядер, состоящих из наборов SRAM-ячеек (64×64), а также два SIMD-ядра и движок преобразования данных. Суммарно доступен 1 Гбайт SRAM с пропускной способностью 150 Тбайт/с.

ASIC объединён со 128 Гбайт LPDDR5 (до 400 Гбайт/с) посредством органической подложки (без дорогостоящего кремниевого интерпозера). Хотя текущее поколение ASIC включает только четыре чиплета именно из-за ограничений подложки, в будущем их количество увеличится. Внешние интерфейсы ASIC представлены стандартным PCIe 5.0 x16 (128 Гбайт/с) и фирменным интерконнектом DMX Link (1 Тбайт/с) для объединения чиплетов.

FHFL-карта Corsair включает два ASIC d-Matrix (т.е. всего восемь чиплетов) и имеет TDP на уровне 600 Вт. Ускоритель работает с форматами данных OCP MX (Microscaling Formats) и обеспечивает до 2400 Тфлопс в MXINT8-вычислениях или 9600 Тфолпс в случае MXINT4. Две карты Corsair можно объединить посредством 512-Гбайт/с мостика DMX Bridge. Их, по словам компании, достаточно для задействования тензорного параллелизма. Дальнейшее масштабирование возможно посредством PCIe-коммутации. Именно поэтому d-Matrix работает с GigaIO и Liqid. В одно шасси можно поместить восемь карт Corsair, а в стойку, которая будет потреблять порядка 6–7 кВт — 64 карты.

d-Matrix уже разрабатывает ASIC следующего поколения Raptor, который должен выйти в 2026 году. Raptor будет ориентирован на «думающие» модели и получит ещё больше памяти за счёт размещения DRAM непосредственно поверх вычислительных чиплетов. SRAM-чиплеты Raptor также перейдут с 6-нм техпроцесса TSMC, который используется при изготовлении Corsair, к 4 нм без существенных изменений микроархитектуры. По словам компании, она потратила два года на работу с TSMC, чтобы создать 3D-упаковку для нового поколения ASIC.

Как отмечает EETimes, команда разработчиков ПО d-Matrix в два раза больше команды разработчиков оборудования (120 против 60). Стратегия компании в области ПО заключается в максимальном использовании open source экосистемы, включая PyTorch, OpenAI Triton, MLIR, OpenBMC и т.д. Вместе они образуют программный стек Aviator, который отвечает за конвертацию моделей в числовые форматы d-Matrix, применяет к ним фирменные методы разрежения, компилирует их, распределяет нагрузку по картам и серверам, а также управляет исполнением моделей, включая обслуживание большого количества запросов.

Постоянный URL: http://servernews.ru/1116718
07.09.2023 [23:02], Сергей Карасёв

Разработчик ускорителей для генеративного ИИ D-Matrix привлёк на развитие $110 млн

Стартап D-Matrix, по сообщению ресурса SiliconAngle, провёл крупный раунд финансирования Series B, в ходе которого на развитие привлечено $110 млн. Данную программу возглавила инвестиционная фирма Temasek, базирующаяся в Сингапуре.

Компания D-Matrix создаёт чипы и платформы, предназначенные для развертывания систем генеративного ИИ. Стартап проектирует микросхемы со специализированной чиплетной архитектурой, использующей концепцию «цифровых вычислений в памяти» (DIMC). Это позволяет перенести полностью программируемую память непосредственно на чип, что даёт возможность уменьшить задержки и повысить эффективность.

 Источник изображения: D-Matrix

Источник изображения: D-Matrix

Отмечается, что большие языковые модели, такие как Llama 2 от Meta Platform и ChatGPT от OpenAI, обучаются на огромных массивах данных. Именно для оптимизации этого процесса и предназначены решения D-Matrix. В частности, изделие под названием Jayhawk II, как утверждает стартап, позволяет повысить эффективность обучения в 10–20 раз по сравнению с GPU и уменьшить затраты в 10–20 раз.

В нынешнем раунде финансирования D-Matrix приняли участие существующие инвесторы в лице Playground Global, венчурного фонда M12 корпорации Microsoft, Nautilus Venture Partners и Entrada Ventures. К ним присоединились Industry Ventures, Ericsson Ventures, Marlan Holdings, Mirae Asset и Samsung Ventures. Стартап D-Matrix в апреле 2022 года получил $44 млн в рамках предыдущего раунда финансирования, возглавляемого M12 и компанией SK hynix Inc. Таким образом, общая сумма привлечённых средств достигла $154 млн.

Постоянный URL: http://servernews.ru/1092682

Входит в перечень общественных объединений и религиозных организаций, в отношении которых судом принято вступившее в законную силу решение о ликвидации или запрете деятельности по основаниям, предусмотренным Федеральным законом от 25.07.2002 № 114-ФЗ «О противодействии экстремистской деятельности»;

Система Orphus