Материалы по тегу: dgx
20.02.2024 [23:25], Сергей Карасёв
Поменьше и побольше: у NVIDIA оказалось сразу два ИИ-суперкомпьютера EOSНа днях NVIDIA снова официально представила суперкомпьютер EOS для решения ресурсоёмких задач в области ИИ. Издание The Register обратило внимание на нестыковки в публичных заявлениях компании относительно конфигурации и производительности машины. В итоге NVIDIA признала, что у неё есть две архитектурно похожих системы под одним и тем же именем. Впрочем, полной ясности это не внесло. НРС-комплекс EOS изначально был анонсирован почти два года назад — в марте 2022-го. Тогда речь шла о кластере, объединяющем 576 систем NVIDIA DGX H100, каждая из которых содержит восемь ускорителей H100 — в сумме 4608 шт. Суперкомпьютер, согласно заявлениям NVIDIA, обеспечивает ИИ-быстродействие на уровне 18,4 Эфлопс (FP8), тогда как производительность на операциях FP16 составляет 9 Эфлопс, а FP64 — 275 Пфлопс. Вместе с тем в ноябре 2023 года NVIDIA объявила о том, что ИИ-суперкомпьютер EOS поставил ряд рекордов в бенчмарках MLPerf Training. Тогда говорилось, что комплекс содержит 10 752 ускорителя H100, а его FP8-производительность достигает 42,6 Эфлопс. Представители компании сообщили, что суперкомпьютер, использованный для MLPerf Training с 10 752 ускорителями H100, «представляет собой другую родственную систему, построенную на той же архитектуре DGX SuperPOD». Вместе с тем комплекс, занявший 9-е место в TOP500 от ноября 2023 года — это как раз версия EOS с 4608 ускорителями, представленная на днях в рамках официального анонса. Но... цифры всё не сходятся! В TOP500 FP64-производительность EOS составляет 121,4 Пфлопс при пиковом значении 188,7 Пфлопс. Сама NVIDIA, как уже было отмечено выше, называет цифру в 275 Пфлопс. Таким образом, суперкомпьютер, участвующий в рейтинге TOP500, мог содержать от 2816 до 3161 ускорителя H100 из 4608 заявленных. С чем связано такое несоответствие, не совсем ясно. Высказываются предположения, что у NVIDIA могли возникнуть сложности с обеспечением стабильности кластера на момент составления списка TOP500, поэтому система была включена в него в урезанной конфигурации.
07.02.2024 [22:31], Владимир Мироненко
Северный браузерный ИИ: Opera развернёт в исландском дата-центре atNorth кластер NVIDIA DGX SuperPOD для обучения чат-бота AriaНорвежская компания Opera Software, разработчик браузера Opera, объявила о предстоящем запуске в этом месяце ИИ-кластера на базе NVIDIA DGX SuperPOD в дата-центре atNorth в Кеблавике (Исландия). Принадлежащий atNorth ЦОД ICE02 ёмкостью более 80 МВт имеет площадь 13 750 м2 и вмещает около 3000 стоек. С помощью нового кластера Opera будет обучать встроенный в браузер чат-бот Aria на основе ИИ. Как сообщается в пресс-релизе ИИ-кластер спроектирован так, чтобы оказывать минимально возможное воздействие на окружающую среду. Он использует гидроэлектрическую и геотермальную энергию для получения энергии, и пользуется преимуществами прохладного климата Исландии для охлаждения оборудования. Кластер на базе NVIDIA DGX SuperPOD оснащён ускорителями NVIDIA H100 и программной платформой NVIDIA AI Enterprise. «Aria быстро развивается, и мы продолжаем расширять его возможности в качестве помощника в навигации для наших пользователей», — сообщил Кристиан Зубель (Krystian Zubel), вице-президент ИТ-группы компании Opera. Как отметил представитель NVIDIA Карло Руис (Carlo Ruiz), компаниям, модернизирующим свой бизнес с помощью ИИ, требуется мощная инфраструктура для разработки больших языковых моделей (LLM) и создания приложений генеративного ИИ. «NVIDIA DGX SuperPOD с ускорителями NVIDIA H100 предоставляет Opera расширенные возможности супервычислений на базе ИИ, помогая разработчикам создавать новые функции, которые сделают опыт генеративного ИИ доступным для пользователей», — заявил он.
25.01.2024 [16:57], Владимир Мироненко
Equinix Private AI поможет компаниям быстро развернуть частные ИИ-облака на базе NVIDIA DGXEquinix анонсировала полностью управляемый частный облачный сервис Private AI, который упрощает компаниям работу суперкомпьютерной ИИ-инфраструктурой NVIDIA DGX AI, ускоряя таким образом создание и запуск пользовательских моделей генеративного искусственного интеллекта (ИИ). Equinix обеспечивает поддержку и безопасность корпоративного уровня, включая помощь специалистов ЦОД IBX и экспертов NVIDIA по ИИ. Equinix Private AI охватывает системы NVIDIA DGX, сетевые решения NVIDIA и программную платформу NVIDIA AI Enterprise. Equinix развёртывает принадлежащую клиенту инфраструктуру в ЦОД IBX и управляет ей. Глава Equinix заявил, что для реализации потенциала генеративного ИИ, предприятиям необходима адаптируемая, масштабируемая гибридная инфраструктура на местных рынках. «Наш новый сервис предоставляет клиентам быстрый и экономичный способ внедрения передовой инфраструктуры ИИ, которая эксплуатируется и управляется экспертами по всему миру», — отметил он. Сервис уже доступен для всех желающих. Среди компаний, получивших ранний доступ к нему, есть ведущие бренды в области биофармацевтики, финансовых услуг, ПО, автомобилестроения и ретейла, которые создают центры передового опыта в области ИИ. Они формируют основу для широкого спектра быстро развивающихся вариантов использования LLM, таких как ускорение вывода на рынок новых препаратов, разработка ИИ-ассистентов для агентов по обслуживанию клиентов и виртуальных помощников по повышению производительности. Полностью управляемый сервис NVIDIA AI от Equinix позволяет клиентам управлять своей инфраструктурой ИИ в непосредственной близости от источников данных. Сервис предлагает высокоскоростной доступ к частным сетям, облакам и поставщиками корпоративных услуг, что ускоряет обработку ИИ-нагрузок с одновременным соблюдением требований к безопасности данных и соответствием правовым нормам.
08.11.2023 [20:00], Игорь Осколков
Счёт на секунды: ИИ-суперкомпьютер NVIDIA EOS с 11 тыс. ускорителей H100 поставил рекорды в бенчмарках MLPerf TrainingВместе с публикацией результатов MLPerf Traning 3.1 компания NVIDIA официально представила новый ИИ-суперкомпьютер EOS, анонсированный ещё весной прошлого года. Правда, с того момента машина подросла — теперь включает сразу 10 752 ускорителя H100, а её FP8-производительность составляет 42,6 Эфлопс. Более того, практически такая же система есть и в распоряжении Microsoft Azure, и её «кусочек» может арендовать каждый, у кого найдётся достаточная сумма денег. Суммарно EOS обладает порядка 860 Тбайт памяти HBM3 с агрегированной пропускной способностью 36 Пбайт/с. У интерконнекта этот показатель составляет 1,1 Пбайт/с. В данном случае 32 узла DGX H100 объединены посредством NVLink в блок SuperPOD, а за весь остальной обмен данными отвечает 400G-сеть на базе коммутаторов Quantum-2 (InfiniBand NDR). В случае Microsoft Azure конфигурация машины практически идентичная с той лишь разницей, что для неё организован облачный доступ к кластерам. Но и сам EOS базируется на платформе DGX Cloud, хотя и развёрнутой локально. В рамках MLPerf Training установила шесть абсолютных рекордов в бенчмарках GPT-3 175B, Stable Diffusion (появился только в этом раунде), DLRM-dcnv2, BERT-Large, RetinaNet и 3D U-Net. NVIDIA на этот раз снова не удержалась и добавила щепотку маркетинга на свои графики — когда у тебя время исполнения теста исчисляется десятками секунд, сравнивать свои результаты с кратно меньшими по количеству ускорителей кластерами несколько неспортивно. Любопытно, что и на этот раз сравнивать H100 приходится с Habana Gaudi 2, поскольку Intel не стесняется показывать результаты тестов. NVIDIA очередной раз подчеркнула, что рекорды достигнуты благодаря оптимизациям аппаратной части (Transformer Engine) и программной, в том числе совместно с MLPerf, а также благодаря интерконнекту. Последний позволяет добиться эффективного масштабирования, близкого к линейному, что в столь крупных кластерах выходит на первый план. Это же справедливо и для бенчмарков из набора MLPerf HPC, где система EOS тоже поставила рекорд.
05.10.2023 [13:06], Сергей Карасёв
ИИ-провайдер 6Estates развернул свою первую систему NVIDIA DGX BasePOD на базе DGX H100Компания 6Estates, сингапурский провайдер ИИ-решений для корпоративных заказчиков, объявила о развёртывании первой системы NVIDIA DGX BasePOD на основе DGX H100. Кластер будет применяться для решения ресурсоёмких задач в области ИИ. Фирма 6Estates, созданная на базе Национального университета Сингапура и Университета Цинхуа, специализируется на предоставлении предприятиям решений, использующих LLM. Кроме того, 6Estates является участником программы NVIDIA Inception по поддержке стартапов в области ИИ. DGX BasePOD — это референсная архитектура, которая объединяет вычислительные мощности, сетевые инструменты, СХД, необходимое ПО и другие компоненты в интегрированную ИИ-инфраструктуру на основе NVIDIA DGX. 6Estates планирует использовать BasePOD на базе DGX H100 для своего нового предложения Model Solutions, которое даёт предприятиям возможность создавать персонализированные LLM и приложения для конкретных задач. Кроме того, 6Estates получит доступ к комплексному пакету фреймворков и ИИ-инструментов NVIDIA AI Enterprise. ![]() Источник изображения: 6Estates Используя DGX H100, 6Estates существенно сократит время обучения моделей и обеспечит более быстрое предоставление услуг Model Solutions корпоративным клиентам. Кластер также будет поддерживать существующие решения 6Estates в области ИИ, в частности, специализированную платформу, которая автоматизирует обработку и анализ неструктурированных документов без шаблонов, а также автоматизирует рабочие процессы для кредиторов и торговых компаний.
29.09.2023 [22:57], Руслан Авдеев
Французская iliad Group приобрела ИИ-кластер NVIDIA DGX SuperPOD из 1016 ускорителей H100 и задумала создать универсальный ИИФранцузская ГК iliad Group заявила о приобретении системы NVIDIA DGX SuperPOD для предоставления участникам европейского рынка IT «самого мощного» в регионе облачного ИИ-суперкомпьютера, включающего 1016 ускорителей H100 (127 систем DGX последнего поколения). За покупку отвечал облачный провайдер Scaleway, а сама машина разместилась в ЦОД Datacenter 5 в окрестностях Парижа. Это только первый шаг компании на пути к достижению краткосрочной цели по предоставлению новых вычислительных мощностей клиентам. Для того, чтобы удовлетворить любые запросы клиентов, Scaleway обеспечила предоставление вычислительных мощностей небольшими блоками, по паре связанных серверов DGX H100 в каждом. В ближайшие месяцы Scaleway продолжит наращивать вычислительные способности платформы. Кроме того, iliad анонсировала создание в Париже ИИ-лаборатории, в которую уже инвестировано более €100 млн. Её главой стал миллиардер Ксавье Ниль (Xavier Niel), фактически контролирующий iliad Group. Лаборатория, как сообщается, привлекла известных исследователей из крупнейших международных компаний. Основной целью лаборатории станет помощь в создании универсального ИИ, а результаты исследований в этом направлении будут доступны публично.
27.07.2023 [15:42], Сергей Карасёв
NVIDIA объявила о доступности облака DGX Cloud для генеративного ИИКомпания NVIDIA объявила о доступности облачного сервиса DGX Cloud, предназначенного для обучения сложных моделей для генеративного ИИ и других приложений. Инфраструктура вычислительной платформы расположена в США и Великобритании. Сервис DGX Cloud был анонсирован в марте нынешнего года. Эта ИИ-платформа предоставляет предприятиям доступ к инфраструктуре и сопутствующему ПО для решения ресурсоёмких задач. Каждый экземпляр DGX Cloud оснащен восемью ускорителями NVIDIA. Инстансы могут объединяться в кластеры и управлять всем комплексом посредством NVIDIA Base Command Platform. Говорится, что на сегодняшний день тысячи ускорителей NVIDIA включены в состав Oracle Cloud Infrastructure (OCI). ![]() Источник изображения: NVIDIA Доступ к облачному ИИ-суперкомпьютеру клиенты могут получить через браузер. Стоимость инстансов DGX Cloud начинается с $36 999 в месяц. Заказчикам доступно ПО NVIDIA AI Enterprise — набор специализированных ИИ-инструментов, который упрощает разработку, внедрение и управление жизненным циклом ИИ-моделей.
12.07.2023 [15:35], Сергей Карасёв
Дата-центр Digital Realty в Японии получил сертификацию NVIDIA DGX H100-ReadyАмериканский оператор дата-центров Digital Realty сообщил о том, что его новый ЦОД KIX13 в Осаке (Япония) получил сертификацию NVIDIA DGX H100-Ready. Это означает, что на площадке могут использоваться системы DGX H100 для работы с ресурсоёмкими приложениями ИИ. ![]() Источник изображения: NVIDIA Сертификация выполнена в рамках программы NVIDIA DGX-Ready Data Center. Площадка KIX13 была открыта в феврале нынешнего года. Дата-центр имеет общую площадь приблизительно 23 тыс. м2, а полезная мощность составляет 21 МВт. Коэффициент энергоэффективности PUE равен 1,4. «Digital Realty понимает, какое влияние ИИ окажет на то, как предприятия будут проводить цифровую трансформацию в ближайшие годы. Однако бизнес-прорывы, ставшие возможными благодаря ИИ, могут быть реализованы только в том случае, если компании смогут интегрировать эту технологию в свою деятельность, и именно в этом мы им поможем», — сказал Крис Шарп (Chris Sharp), технический директор Digital Realty.
29.05.2023 [07:30], Сергей Карасёв
NVIDIA представила 1-Эфлопс ИИ-суперкомпьютер DGX GH200: 256 суперчипов Grace Hopper и 144 Тбайт памятиКомпания NVIDIA анонсировала вычислительную платформу нового типа DGX GH200 AI Supercomputer для генеративного ИИ, обработки огромных массивов данных и рекомендательных систем. HPC-платформа станет доступна корпоративным заказчикам и организациям в конце 2023 года. Платформа представляет собой готовый ПАК и включает, в частности, наборы ПО NVIDIA AI Enterprise и Base Command. Для платформы предусмотрено использование 256 суперчипов NVIDIA GH200 Grace Hopper, объединённых при помощи NVLink Switch System. Каждый суперчип содержит в одном модуле Arm-процессор NVIDIA Grace и ускоритель NVIDIA H100. Задействован интерконнект NVLink-C2C (Chip-to-Chip), который, как заявляет NVIDIA, значительно быстрее и энергоэффективнее, нежели PCIe 5.0. В результате, скорость обмена данными между CPU и GPU возрастает семикратно, а затраты энергии сокращаются примерно в пять раз. Пропускная способность достигает 900 Гбайт/с. Технология NVLink Switch позволяет всем ускорителям в составе системы функционировать в качестве единого целого. Таким образом обеспечивается производительность на уровне 1 Эфлопс (~ 9 Пфлопс FP64), а суммарный объём памяти достигает 144 Тбайт — это почти в 500 раз больше, чем в одной системе NVIDIA DGX A100. Архитектура DGX GH200 AI Supercomputer позволяет добиться 10-кратного увеличения общей пропускной способности по сравнению с HPC-платформой предыдущего поколения. Ожидается, что Google Cloud, Meta✴ и Microsoft одними из первых получат доступ к суперкомпьютеру DGX GH200, чтобы оценить его возможности для генеративных рабочих нагрузок ИИ. В перспективе собственные проекты на базе DGX GH200 смогут реализовывать крупнейшие провайдеры облачных услуг и гиперскейлеры. Для собственных нужд NVIDIA до конца 2023 года построит суперкомпьютер Helios, который посредством Quantum-2 InfiniBand объединит сразу четыре DGX GH200.
21.03.2023 [19:15], Сергей Карасёв
NVIDIA представила систему DGX Quantum для гибридных квантово-классических вычисленийКомпания NVIDIA в партнёрстве с Quantum Machines анонсировала DGX Quantum — первую систему, объединяющую GPU и квантовые вычисления. Решение использует новую открытую программную платформу CUDA Quantum. Утверждается, что система предоставляет революционно архитектуру для исследователей, работающими с гибридными вычислениями с низкой задержкой. NVIDIA DGX Quantum объединяет средства ускоренных вычислений на базе Grace Hopper (Arm-процессор + ускоритель H100), модели программирования с открытым исходным кодом CUDA Quantum и передовую квантовую управляющую платформу Quantum Machines OPX+. Такая комбинация позволяет создавать ресурсоёмкие приложения, сочетающие квантовые вычисления с современными классическими вычислениями. При этом в числе прочего обеспечивается работа гибридных алгоритмов и коррекция ошибок. ![]() Источник изображения: NVIDIA Представленное решение предполагает соединение Grace Hopper и Quantum Machines OPX+ посредством интерфейса PCIe. Это обеспечивает задержку менее микросекунды между ускорителем и блоками квантовой обработки (QPU). Отмечается, что OPX+ — это универсальная система квантового управления. Таким образом, можно максимизировать производительность QPU и предоставить разработчикам новые возможности при использовании квантовых алгоритмов. Системы Grace Hopper и OPX+ можно масштабировать в соответствии с потребностями — от QPU с несколькими кубитами до суперкомпьютера с квантовым ускорением. О намерении интегрировать CUDA Quantum в свои платформы уже заявили компании по производству квантового оборудования Anyon Systems, Atom Computing, IonQ, ORCA Computing, Oxford Quantum Circuits и QuEra, разработчики ПО Agnostiq и QMware, а также некоторые суперкомпьютерные центры. |
|