Материалы по тегу: фотоника

09.08.2023 [18:28], Алексей Степин

Lightelligence представила оптический CXL-интерконнект Photowave

Компания Lightelligence, специализирующаяся в области фотоники и оптических вычислений, анонсировала любопытную новинку — систему оптического интерконнекта для ЦОД нового поколения. Решение под названием Photowave реализовано на базе стандарта CXL и призвано упростить и сделать более надёжными системы с композитной инфраструктурой, заменив традиционные медные кабели оптоволокном.

Решение Photowave — дальнейшее развитие парадигмы Lightelligence, уже представившей ранее первый оптический ускоритель Hummingbird для ИИ-систем. Сердцем Photowave является оптический трансивер oNET на базе фирменных технологий компании. Согласно заявлениям Lightelligence, уровень задержки составляет менее 20 нс на уровне адаптера, кабель добавляет к этой цифре менее 1 нс.

 Источник изображений здесь и далее: Lightelligence

Источник изображений здесь и далее: Lightelligence

Серия Photowave включает в себя трансиверы в разных форм-факторах — как в виде традиционной платы расширения PCI Express, так и в виде карты OCP 3.0 SFF. Платы трансиверов поддерживают CXL 2.0/PCIe 5.0 с числом линий от 2 до 16. Пропускная способность каждой линии составляет 32 Гбит/с.

Как уже упоминалось, главная задача Photowave — создание эффективных и надёжных композитных инфраструктур в ЦОД нового поколения, где благодаря всесторонней поддержки CXL будет достигнута высокая степень дезагрегации вычислительных ресурсов, а также памяти и хранилищ.

Постоянный URL: http://servernews.ru/1091256
04.07.2023 [20:05], Алексей Степин

HBM по оптике: фотонный интерконнект Celestial AI Photonic Fabric обеспечит плотность до 7,2 Тбит/с на кв. мм

Celestial AI, получившая $100 млн инвестиций, объявила о разработке интерконнекта Photonic Fabric, покрывающего все ниши: межкристалльного (chip-to-chip), межчипового (package-to-package) и межузлового (node-to-node) обмена данными.

На рынке уже есть решения вроде Lightmatter Passage или Ayar Labs TeraPhy I/O. Тем не менее, Celestial AI привлекла внимание множества инвесторов, в том числе Broadcom. Последняя поможет в разработке прототипов, которые должны увидеть свет в течение 18 месяцев. В основе технологий Celestial AI лежит сочетание кремниевой фотоники и техпроцесса CMOS (TSMC, 4 или 5 нм), разработанных совместно с Broadcom.

При этом речь идёт не об обычном «глупом» интерконнекте — разработчики говорят о блоках маршрутизации и коммутации на любом «конце» волокна. Разработка позволит объединить в одной упаковке несколько ASIC или даже SoC посредством оптического интерпозера или моста OMIB (multi-chip interconnect bridge). Celestial AI утверждает, что её технологии эффективнее, чем у конкурентов, и позволяет объединить несколько чипов с теплопакетами в районе сотен ватт.

 Источник здесь и далее: Celestial AI

Источник здесь и далее: Celestial AI

Пока что технология опирается на 56-Гбит/с трансиверы SerDes. С четырьмя портами на узел и четырьмя линиями на порт речь идёт о пропускной способности до 1,8 Тбит/с на 1 мм2 чипа, что позволяет «прокормить» полноценную сборку из четырёх кристаллов HBM3. Второе поколение Photonic Fabric будет использовать уже 112-Гбит/с SerDes-блоки, что поднимет пропускную способность вчетверо, до 7,2 Тбит/с на мм2.

Интерконнект Celestial AI не зависит от проприетарных протоколов, в его основе лежат стандарты Compute Express Link (CXL) и Universal Chiplet Interconnect (UCIe), а также JEDEC HBM. В настоящее время сдерживающим фактором разработчики называют сами шины PCIe и UCIe. Их интерконнект, считают они, способен на большее.

Постоянный URL: http://servernews.ru/1089413
30.06.2023 [12:30], Сергей Карасёв

Lightelligence представила оптический ускоритель Hummingbird

Компания Lightelligence, занимающаяся фотонными вычислениями, представила Hummingbird — специализированный оптический ускоритель, предназначенный для применения в системах, ориентированных на решение сложных задач, связанных с алгоритмами ИИ.

Разработчик называет новинку «оптической сетью на чипе» (Optical Network-on-Chip, oNOC). Устройство объединяет в одном корпусе фотонный блок и традиционный электронный узел. Изделие призвано выполнять функции коммуникационного сетевого компонента для дата-центров и высоконагруженных платформ.

 Источник изображения: Lightelligence

Источник изображения: Lightelligence

Hummingbird использует технологию Lightelligence oNOC, предназначенную для повышения производительности вычислений путём использования инновационных межсоединений на базе кремниевой фотоники. Благодаря применению света снижаются задержки и сокращается энергопотребление по сравнению с традиционными решениями.

 Источник изображения: Lightelligence

Источник изображения: Lightelligence

В Hummingbird задействованы 64 передатчика и 512 приемников, 38 МиБ SRAM и 2 Гбайт DDR4. Ускоритель может стать одним из ключевых компонентов оптических сетей высокой плотности. Изделие выполнено в формате полноразмерной двухслотовой карты расширения с интерфейсом PCIe 3.0 x4, благодаря чему подходит для применения в существующих серверах. Разработчикам доступен комплект SDK для развёртывания различных приложений ИИ и машинного обучения.

Постоянный URL: http://servernews.ru/1089231
06.09.2022 [22:47], Алексей Степин

Кремниевая фотоника Lightmatter Passage объединит чиплеты на скорости 96 Тбайт/с

На конференции Hot Chips 34 компания Lightmatter, занимающаяся созданием фотонного ИИ-процессора, рассказала о своей новой разработке, Lightmatter Passage, открывающей для чиплетов эру фотоники. Как известно, переход на чиплеты позволил разработчикам сложных чипов сравнительно малой кровью обойти ограничения, накладываемые технологиями на создание монолитных кристаллов большой площади. Однако современный высокоскоростной межчиплетный интерконнект всё равно весьма сложен и потребляет сравнительно много энергии. И по мере роста количества чиплетов на общей подложке проблема будет лишь обостряться.

 Изображения: Lightmatter (via ServeTheHome)

Изображения: Lightmatter (via ServeTheHome)

Но технология Lightmatter Passage, призванная заменить электрический интерконнект оптическим, позволит эту проблему обойти. По сути, Passage — универсальная кремниевая прослойка, содержащая в своём составе лазеры, оптические модуляторы, фотодетекторы, волноводы, а также классические транзисторы для сопутствующей логики. Поверх этой прослойки Lightmatter и предлагает размещать чиплеты любой архитектуры.

Электрическая часть Passage имеет изменяемую конфигурацию и в текущей реализации поддерживает установку до 48 чиплетов (в виде матрицы 6×8). Производится такая прослойка из 300-мм кремниевой пластины SOI, верхний и нижний слои Passage имеют классические контакты для чиплетов и установки на PCB соответственно. При этом максимальная подводимая электрическая мощность может достигать 700 Вт. Вся же коммуникация чиплетов между собой происходит внутри и является оптической.

Матрица фотонных волноводов, плотность которой в 40 раз выше, чем у традиционных оптоволоконные технологий, обеспечивает латентность одного перехода на уровне менее 2 нс. Как заявляют разработчики, расстояние между чиплетами при этом роли не играет — для любого сочетания пары точек «входа» и «выхода» сигнала значение задержки одинаково. Высокая плотность волноводов позволяет «накормить» каждый чиплет потоком данных до 96 Тбайт/с, а внешние каналы Passage позволяют связать чипы с другими компонентами системы на скоростях до 16 Тбайт/с.

Основой данной технологии является фирменная разработка компании, позволяющая точно «сшивать» в пределах нескольких слоев SOI-кремния электрические соединения с многочисленными волноводами. Уже существующая в кремнии тестовая реализация Passage потребляет 21 Вт, позволяет устанавливать до 48 чиплетов площадью по 800 мм2, обеспечивает каждое посадочное место 32 каналами с пропускной способностью 1024 Тбит/с, причём топологию интерконнекта можно динамически менять.

Тестовая подложка Passage, полученная из 300-мм пластины, содержит 288 лазеров мощностью 50 мВт каждый. Всего в состав системы входит 150 тыс. компонентов, и это заявка на абсолютный рекорд для фотонных чипов. Кроме того, новая технология совместима со стандартом UCIe — говорится о скорости 32 Гбит/с на линию. Впрочем, в случае простого SerDes-соединения, как считают создатели, этот показатель можно поднять до 112 Гбит/с.

Постоянный URL: http://servernews.ru/1073628
04.07.2022 [22:18], Алексей Степин

Intel разработала фотонный техпроцесс с интегрированным мультиволновым массивом лазеров

Фотоника сулит немалые преимущества, и особенно ярко они проявятся в случае достижения высокой степени интеграции — если внешний источник лазерного излучения может существенно усложнить систему и сделать её более дорогой, то интегрированный на кремниевую пластину, напротив, многое упрощает.

Неудивительно, что разработчики, бьющиеся над созданием гибридных фотонных чипов, нацелены именно на такой вариант. Ранее мы рассказывали о варианте Synopsys и Juniper Networks, которые также планируют использовать интегрированные лазеры в рамках возможностей техпроцесса PH18DA компании Tower Semiconductor, а сейчас успеха добилась корпорация Intel.

 Традиционные оптические модуляторы достаточно громоздки. Источник: Intel Labs

Традиционные оптические модуляторы достаточно громоздки. Источник: Intel Labs

Научно-исследовательское подразделение компании, Intel Labs, сообщает, что на базе «существующего кремниевого-фотонного техпроцесса для пластин диаметром 300 мм» удалось создать интегрированный лазерный массив, работающий с восемью длинами волн. Это хорошо отработанная технология, на её основе Intel уже производит оптические трансиверы, что открывает дорогу к достаточно быстрому началу производству фотонных чипов со встроенными лазерными массивами.

 Вариант Intel использует компактные  кольцевые микромодуляторы. Источник: Intel Labs

Вариант Intel использует компактные кольцевые микромодуляторы. Источник: Intel Labs

В технологии используются лазерные диоды с распределённой схемой обратной связи (distributed feedback, DFB), которая позволяет добиться высокой точности как в мощности излучения в пределах 0,25 дБ, так и в спектральных характеристиках, где отклонения в границах используемых спектров не превышают 6,5%. Достигнутые параметры превышают аналогичные показатели классических полупроводниковых лазеров.

Компания также отмечает, что применённая ей новая технология кольцевых микромодуляторов, отвечающих за конверсию электрического сигнала в оптический, существенно компактнее более традиционных решений других разработчиков. Такой подход позволяет поднять удельную плотность фотонных линий передачи данных, то есть, при прочих равных условиях, чип, оснащённый интерконнектом Intel, будет иметь более «широкую» оптическую шину с более высокой пропускной способностью.

 В технологии используется массив из 8 лазеров. Источник: Intel Labs

В технологии используется массив из 8 лазеров. Источник: Intel Labs

Технология гибридной фотоники со встроенными лазерами, использующая мультиплексирование с разделением по длине волны (dense wavelength division multiplexing, DWDM), делает высокоскоростной оптический интерконнект возможным, но до успеха Intel данная технология упиралась именно в точность разделения спектра и в достаточно высокое энергопотребление источников излучения.

В настоящее время уже ведутся работы по созданию специального чиплета, который позволит вывести оптический интерконнект за пределы кремниевой пластины, а это в перспективе даст возможность как для фотонного соединения между центральным процессором и памятью или GPU, так и для реализации будущих ещё более скоростных версий стандарта PCI Express или его наследника.

 Дорога к высокоскоростному оптическому интерконнекту открыта! Источник: Intel Labs

Дорога к высокоскоростному оптическому интерконнекту открыта! Источник: Intel Labs

Ayar Labs, один из пионеров в освоении гибридных электронно-оптических технологий однако считает, что у подхода Intel есть и недостатки. Сам по себе оптический интерконнект, конечно, может быть производительнее классического, и к тому же он не подвержен помехам. Однако лазерные диоды по природе своей достаточно капризны, а глубокая интеграция источника излучения в чип при выходе хотя бы одного лазера из строя делает всю схему бесполезной. В своих решениях Ayar Labs полагается на внешний лазерный модуль SuperNova.

Постоянный URL: http://servernews.ru/1069437
02.03.2021 [13:45], Сергей Карасёв

Cisco закрыла сделку по покупке разработчика оптических компонентов Acacia

Американская компания Cisco, один из крупнейших в мире поставщиков сетевого оборудования, завершила сделку по поглощению Acacia Communications — разработчика оптических компонентов. Слияние позволит Cisco укрепить позиции на рынке кремниевой фотоники.

Напомним, что Cisco сообщила о планах по покупке Acacia ещё в 2019 году. Тогда говорилось, что сумма сделки составит приблизительно $2,6 млрд. Однако первоначальные условия впоследствии изменились. Так, в январе нынешнего года Acacia объявила о расторжении договора с Cisco: причиной стало то, что сделка в обозначенные сроки не получила одобрения Государственного управления по регулированию рынка Китайской Народной Республики (SAMR). В свою очередь, Cisco обратилась в суд, настаивая на завершении слияния.

 Источник изображения: Cisco

Источник изображения: Cisco

Позднее компании смогли найти общий язык, правда, сумма сделки значительно выросла, составив $4,5 млрд. И вот теперь сообщается, что слияние завершено. Поглощение поможет Cisco расширить ассортимент продукции для построения высокоскоростных сетей передачи данных. Речь, в частности, идёт об оборудовании класса 400G и выше.

Постоянный URL: http://servernews.ru/1033884
Система Orphus