Материалы по тегу: сервер

02.06.2021 [19:14], Игорь Осколков

Южная Корея намерена разработать собственные CPU и ИИ-чипы для суперкомпьютеров и серверов

Южная Корея намерена добиться большей независимости в сфере разработки и производства чипов для серверов и суперкомпьютеров, в первую очередь для нужд внутри страны. По сообщению Министерства науки и ИКТ Южной Кореи, пять гиперскейлеров подписали меморандум о взаимопонимании с пятью производителями микросхем.

Меморандум предполагает расширение использования отечественных технологий, в частности, ИИ-ускорителей в центрах обработки данных на территории страны. Производители и разработчики чипов — SK Group, Rebellions, FuriosaAI и Исследовательский институт электроники и телекоммуникаций — также согласились создать для этого новый технологический центр в Кванджу на юго-западе страны.

Отечественные чипы получат компании Naver Cloud, Douzone Bizon, Kakao Enterprise, NHN и KT. Все они являются крупными игроками на местном рынке и, каждая в своей области, довольно успешно конкурируют с зарубежными IT-гигантами. Это во многом напоминает ситуацию в Китае и Японии, которые также имеют сильных локальных игроков и вкладываются в разработку собственной микроэлектроники, чтобы быть менее зависимыми от США, как минимум, в области суперкомпьютинга.

Несколько недель назад правительство объявило о пакете поддержки в размере 510 трлн вон ($451 млрд) для увеличения производства микросхем в стране, что принесёт пользу не только Samsung и SK Hynix, но и небольшим компаниям. Также ранее сообщалось, что Южная Корея намерена к 2030 году построить суперкомпьютер экзафлопсного класса на базе преимущественно «домашних» компонентов.

Постоянный URL: http://servernews.ru/1041074
22.09.2020 [20:32], Игорь Осколков

От периферии до облаков: Arm представила серверные платформы Neoverse V1 Zeus и N2 Perseus с поддержкой SVE, PCIe 5.0, DDR5 и HBM

Компания Arm объявила о расширении своего портфолио серверных решений семейства Neoverse, представив сразу два варианта платформы. Новая серия V и её первенец V1 под кодовым именем Zeus вместе с N2 (Perseus) получат поддержку SIMD-расширений SVE и формата bfloat16, а также интерфейсы PCIe 5.0, DDR5 и HBM.

Однако отличия между ними весьма существенны. В Neoverse V1 в отличие от N2 Arm отказывается от традиционной оптимизации сразу по трём направлениям — энергопотребление, производительность и площадь кристалла — и делает упор на мощность. Вероятно, основой для них станут вариации Cortex-X1. Эти чипы будут потреблять больше энергии и будут физически больше, но взамен предложат значительное увеличение размеров буферов, кешей, окон и очередей. Показатель IPC для одного потока будет увеличен на впечатляющие 50% в сравнении с Neoverse N1.

А новые техпроцессы 5 и 7 нм позволят повысить частоты будущих процессоров. Так что они потенциально смогут соревноваться с грядущими платформами x86-64 не только по показателю производительность на Ватт, но и в чистой производительности. Поспособствует этому и долгожданное официальное появление векторных инструкций Scalable Vector Extension (SVE) в составе самого ядра. Их отличительной чертой (от SSE/AVX) является нефиксированная ширина — производители конкретных SoC могут реализовать поддержку от 128 до 2048 бит с шагом в 128 бит. При этом SVE-код будет работать на любом из них, просто скорость обработки данных будет разной.

Конкретно в V1 Arm заложила два блока SVE-256. Это явно хуже пары SVE-512 в Fujitsu A64FX, единственном «кремнии», который уже поддерживает новые инструкции, но всё равно в два раза лучше, чем у N1 с двумя «старыми» 128-бит NEON. Так что мы вполне можем увидеть в будущем ориентированные на высокопроизводительные вычисления решения от других компаний. Этому поспособствует и поддержка памяти HBM2e. Опять-таки, в A64FX она была нужна именно для того, чтобы SVE-блоки не «голодали». Кроме того, обновлённые спецификации SVE включают и поддержку формата bfloat16, актуального для нейронных сетей.

Arm Neoverse V1 формально доступен уже сейчас. Первыми процессорами на базе этой архитектуры должны стать 72-ядерные SiPearl Rhea, которые вместе с другими чипами, уже на базе открытой архитектуры RISC-V, лягут в основу будущих европейских суперкомпьютеров. Таким образом Евросоюз надеется получить большую независимость от технологий США. Впрочем, объявленная сделка между NVIDIA и Arm может расстроить эти планы. Следующим крупным лицензиатом V1 может стать Ampere, которая готовится выпустить в 2022 году процессоры Siryn.

Что касается архитектуры Neoverse N2, то она появятся уже в следующем году, а лицензирование начнётся в конце этого. Она также получит поддержку SVE и bfloat16, но в виде двух 128-бит блоков. Будет внедрена поддержка HBM3, CXL 2.0 и CCIX 2.0. В N2 Arm придерживается своего традиционного подхода, так что прирост IPC в однопотоке составит «всего лишь» до 40% в сравнении с N1, но при этом сохранятся те же уровень энергопотребления и площадь ядра. Можно предположить, что основной для неё станет Cortex-A78.

Именно N2 должна стать наиболее массовой платформой благодаря масштабируемости. Arm видит различные варианты дизайнов будущих SoC. От 8 до 16 ядер с TDP 20-35 Вт пойдут в экономичные решения на самой границе сети, варианты на 12-36 ядер с TDP от 30 до 80 Вт могут стать основой периферийных вычислений, а сборки с числом ядер от 32 до 192 и с TDP от 80 до 350 Вт займут место в мощных серверах, включая облачные. Пока что единственным более-менее массовым решением на базе Neoverse N1 владеет Amazon — в мае в AWS появились инстансы на базе 64-ядерных Graviton2.

После 2022 года выйдет следующее поколение Neoverse под кодовым именем Poseidon. Про него пока говорится в общих чертах, что оно станет производительнее на 30%, получит улучшения по части векторных инструкций и машинного обучения, обзаведётся поддержкой будущих версий CCIX и CXL, а также предложит более плотную упаковку ядер.

Постоянный URL: http://servernews.ru/1021265
19.06.2020 [18:09], Юрий Поздеев

HPE анонсировала Superdome Flex 280: 224 ядра Cooper Lake и 24 Тбайт RAM

HPE анонсировала Superdome Flex 280 с поддержкой процессоров Intel Xeon третьего поколения, которые вышли недавно. Данная модель дополняет портфель HPE Superdome Flex и ориентирована на средние предприятия, для которых избыточна масштабируемость до 32 сокетов. Оптимально данная модель подойдет для больших баз Oracle, SAP HANA или SQL-сервера.

Новинка выпускается в форм-факторе 5U и поддерживает установку 2 или 4 процессоров Intel Xeon Gold или Intel Xeon Platinum. Это выгодно отличает Superdome Flex от других подобных систем, в которых можно использовать только Intel Xeon Platinum, который стоит значительно дороже.

Недавно анонсировали новые процессоры Intel Xeon третьего поколения, в которых не только добавили функции ускорения ИИ, но и поддержку более быстрой памяти DDR4-3200, что должно положительным образом сказаться на производительности. Максимально в одну платформу можно установить до 24 Тбайт оперативной памяти, а если и этого недостаточно, то можно использовать Intel Optane PMem 200 .

Слотов расширения PCIe тоже достаточно для большинства задач — до 32 на одну платформу, при этом можно установить до 16 графических ускорителей NVIDIA. Для локального хранилища можно использовать до 20 накопителей SAS/SATA/NVMe. Масштабируется платформа Superdome Flex 280 до 8 процессоров с шагом в 2 CPU, что позволяет работать с большими базами данных и моделями для ИИ, для которых требуется большой объем оперативной памяти. Суммарно можно получить до 224 ядер и до 24 Тбайт общей памяти.

HPE Superdome Flex 280 будет доступен в 4 квартале 2020 года.

Постоянный URL: http://servernews.ru/1013796
23.02.2019 [20:20], Геннадий Детинич

Анонс серверных платформ ARM Neoverse E1 и N1: шах и мат, Intel

Уж извините за столь кричащий заголовок, но ARM давно мечтает сказать нечто подобное в отношении серверных платформ Intel. Пока получается не очень. Как говорят в самой ARM, не вышло с первого раза, попробуем во второй. Не получится во второй раз, на третий точно всё будет как надо. А сейчас и повод-то отличный! Разработчики оригинальных ядер ARM из одноимённой компании ударили сразу с двух направлений: по масштабируемым сетевым платформам (Neoverse E1) и по масштабируемым серверным (Neoverse N1). Очевидно, что пока «мата» в этой партии явно не будет. Intel крепко держится за серверные платформы и одновременно тянет руки к периферийным как в виде распределённых вычислительных ресурсов в составе базовых станций, так и в виде обычных периферийных ЦОД. Тем не менее, шансы объявить Intel «шах» у ARM определённо есть.

Рассчитанную на несколько лет вперёд стратегию Neoverse компания ARM представила в середине октября прошлого года. Она предполагает три крупных этапа, в ходе которых будут выходить доступные для широкого лицензирования 64-битные ядра ARM Ares (7 нм), Zeus (7 и 5 нм) и Poseidon (5 нм). Планируется, что каждый год производительность решений будет возрастать на 30 %. Сама компания ARM, напомним, не выпускает процессоры и SoC, а лишь продаёт лицензии на ядра и архитектуру, которые клиенты компании обустраивают нужными им контроллерами и интерфейсами. У ARM настолько многочисленная армия клиентов, что она ожидает буквально цунами из сотен и тысяч миллиардов ядер в год уже в недалёком будущем. Когда-нибудь в этот водоворот ядер будут вовлечены и серверные платформы, а затем количество перейдёт в качество.

Разработка и анонс ядер Neoverse N1 ― это явление народу 7-нм ядер Ares. Процессоры могут нести от 4 до 128 ядер, объединённых согласованной ячеистой сетью. Платформа N1 может служить периферийным компьютером с 8-ядерным процессором с потреблением менее 20 Вт, а может стать сервером в ЦОД на 128-ядерных процессорах с потреблением до 200 Вт. Степень масштабируемости должна впечатлять. Кроме этого, как сообщают в ARM, производительность ядер N1 на облачных нагрузках в 2,5 раза выше, чем у 16-нм ядер предыдущего поколения Cosmos (Cortex-A72, A75 и A53). Кстати, прошлой осенью на платформе Cosmos компания Amazon представила фирменный процессор Graviton.

Производительность N1 при обработке целочисленных значений оказывается на 60 % больше, чем на ядрах Cortex-A72 Cosmos. При этом энергоэффективность ядер N1 также на 30 % выше, чем у ядер Cortex-A72. Как поясняют разработчики, платформа Neoverse N1 построена на «таких инфраструктурных расширениях, как виртуализация серверного класса, современная поддержка сервисов удалённого доступа, управление питанием и производительностью и профилями системного уровня».

Когерентная ячеистая сеть (Coherent Mesh Network, CMN), о которой выше уже говорилось, разработана с учётом высокого соответствия вычислительным возможностям ядер. По словам ARM, сеть обменивается с ядрами такой служебной информацией, которая позволяет устанавливать объём загрузки в память данных для упреждающей выборки, распределяет кеш между ядрами и определяет, как он может быть использован, а также делает много других вещей, которые способствуют оптимизации вычислений.

Интересно отметить, что в составе процессоров на платформе Neoverse N1 может быть существенно больше 128 ядер, но с оптимальной работой возникнут проблемы. Точнее, вычислительная производительность упрётся в пропускную способность памяти. Так, ARM рекомендует для CPU с числом ядер от 64 до 96 использовать 8-канальный контроллер DDR4, а для 96–128 ядерных версий ― контроллер памяти DDR5.

Платформа Neoverse E1 ― это решение для сетевых шлюзов, коммутаторов и сетевых узлов, которое, например, облегчит переход от сетей 4G к сетям 5G с их возросшей требовательностью к каналам передачи данных. Так, Neoverse E1 обещает рост пропускной способности в 2,7 раза, увеличение эффективности при передаче данных в 2,4 раза, а также более чем 2-кратный рост вычислительной мощности по сравнению с предыдущими платформами (ядрами). С масштабируемостью ядер E1 тоже всё в порядке, они позволят создать решение как для базовых станций начального уровня с потреблением менее 35 Вт, так и маршрутизатор с пропускной способностью в сотни гигабайт в секунду.

Что же, ARM расставила на доске новые фигуры. Будет интересно узнать, кто же начнёт игру?

Постоянный URL: http://servernews.ru/983268
29.06.2018 [13:00], Геннадий Детинич

Опубликованы финальные спецификации CCIX 1.0: разделяемый кеш и PCIe 4.0

Чуть больше двух лет назад в мае 2016 года семёрка ведущих компаний компьютерного сектора объявила о создании консорциума Cache Coherent Interconnect for Accelerators (CCIX, произносится как «see six»). В число организаторов консорциума вошли AMD, ARM, Huawei, IBM, Mellanox, Qualcomm и Xilinx, хотя платформа CCIX объявлена и развивается в рамках открытых решений Open Compute Project и вход свободен для всех. В основе платформы CCIX лежит дальнейшее развитие идеи согласованных (когерентных) вычислений вне зависимости от аппаратной реализации процессоров и ускорителей, будь то архитектура x86, ARM, IBM Power или нечто уникальное. Скрестить ежа и ужа — вот едва ли не буквальный смысл CCIX.

 Варианты топологии CCIX

Варианты топологии CCIX

На днях консорциум сообщил, что подготовлены и представлены финальные спецификации CCIX первой версии. Это означает, что вскоре с поддержкой данной платформы на рынок может выйти первая совместимая продукция. По словам разработчиков, CCIX позволит организовать новый класс подсистем обмена данными с согласованием кеша с низкими задержками для следующих поколений облачных систем, искусственного интеллекта, больших данных, баз данных и других применений в инфраструктуре ЦОД. Следующая ступенька в производительности невозможна без эффективных гетерогенных (разнородных) вычислений, которые смешают в одном котле исполнение кода общего назначения и спецкода для ускорителей на базе GPU, FPGA, «умных» сетевых карт и энергонезависимой памяти.

 Решение CCIX IP компании Synopsys

Решение CCIX IP компании Synopsys

Базовые спецификации CCIX Base Specification 1.0 описывают межчиповый и «бесшовный» обмен данными между вычислительными ресурсами (процессорными ядрами), ускорителями и памятью во всём её многообразии. Все эти подсистемы объединены разделяемой виртуальной памятью с согласованием кеша. В основе спецификаций CCIX 1.0, добавим, лежит архитектура PCI Express 4.0 и собственные наработки в области быстрой коррекции ошибок, что позволит по каждой линии обмениваться данными со скоростью до 25 Гбайт/с.

 Тестовая платформа с поддержкой CCIX Synopsys на FPGA матрице

Тестовая платформа с поддержкой CCIX Synopsys на FPGA матрице

Но главное, конечно, не скорость обмена, хотя это важная составляющая CCIX. Главное — в создании программируемых и полностью автономных процессов по обмену данными в кешах процессоров и ускорителей, что реализуется с помощью новой парадигмы разделяемой виртуальной памяти для когерентного кеша. Это радикально упростит создание программ для платформ CCIX и обеспечит значительный прирост в ускорении работы гетерогенных платформ. Вместо механизма прямого доступа к памяти (DMA), со всеми его тонкостями для обмена данными, на платформе CCIX достаточно будет одного указателя. Причём обмен данными в кешах будет происходить без использования драйвера на уровне базового протокола CCIX. Ждём в готовой продукции. Кто первый, AMD, ARM или IBM?

Тестовый набор CCIX

 Рабочая демо-система с неназванным CPU и FPGA, соединённых шиной CCIX

Рабочая демо-система с неназванным CPU и FPGA, соединённых шиной CCIX

Постоянный URL: http://servernews.ru/971947
30.09.2017 [00:15], Алексей Степин

Терафлопс в космосе: на МКС тестируется компьютер HPE Spaceborne

Бытует мнение, что в космической отрасли используется всё самое лучшее, включая компьютерные компоненты. Это не совсем так: вы не встретите в космических аппаратах 18-ядерных Xeon и ускорителей Tesla. Во-первых, энергетические резервы за пределами Земли строго ограничены, и даже на МКС никто не будет тратить несколько киловатт на питание «космического суперкомпьютера». Во-вторых, практически вся электроника, работающая за пределами атмосферы, выпускается в специальном радиационно-стойком исполнении. Чаще всего за счёт техпроцессов «кремний на диэлектрике» (SOI) и «сапфировая подложка» (SOS), используется также биполярная логика вместо менее стойкой к внешним излучениям CMOS.

 Мини-кластер в космическом исполнении. Охлаждение жидкостное

Мини-кластер в космическом исполнении. Охлаждение жидкостное

Мощными в космосе считаются такие решения, как BAE Systems серии RAD, особенно новая RAD5500 (от 1 до 4 ядер, 45-нм SOI, PowerPC, 64 бита). Четырёхъядерный вариант RAD5545 развивает производительность более 3,7 гигафлопс при потреблении около 20 ватт. Иными словами, вычислительные мощности в космосе тоже растут, но совсем иными темпами, нежели на Земле. Тому подтверждением служит недавно вступивший в строй на борту Международной космической станции компьютер HPE Spaceborne. Если на Земле мощность суперкомпьютеров измеряется десятками и сотнями петафлопс, то Spaceborne куда скромнее — судя по проведённым тестам, его вычислительная мощность достигает 1 терафлопса. Достигнута она путём сочетания современных процессоров Intel с ускорителями NVIDIA Tesla P100 (NVLink-версия).

 Конфигурация каждого из узлов Spaceborne

Конфигурация каждого из узлов Spaceborne

Для космических систем это большое достижение, и не стоит иронизировать над этим показателем производительности. Интересно, что сама по себе система Spaceborne, доставленная на борт станции миссией SpaceX CRS-12, является своего рода экспериментом на тему «как чувствуют себя в космосе обычные компьютерные комплектующие». Это связка из двух серверов HPE Apollo 40 на базе Intel Xeon, объединённая сетью со скоростью 56 Гбит/с. 14 сентября на систему было подано питание (48 и 110 вольт), а недавно проведены первые тесты High Performance LINPACK.

 Системы охлаждения и электропитания Spaceborne

Системы охлаждения и электропитания Spaceborne

Пока Spaceborne не будет использоваться для анализа научных данных или управления какими-либо системами станции. Его миссия — продемонстрировать то, насколько живучи обычные серверы в космосе. Результаты постоянных тестов будут сравниваться с аналогичной системой, оставшейся на Земле. Тем не менее, достижение первого терафлопса в космосе является своеобразным мировым рекордом. Это маленький шаг для супервычислений, но большой для всей космической индустрии, поскольку за Spaceborne явно последуют его более совершенные и мощные потомки.

Постоянный URL: http://servernews.ru/959278
Система Orphus