Материалы по тегу: spaceborne

16.04.2022 [23:54], Алексей Степин

Космический суперкомпьютер HPE Spaceborne-2 успешно завершил 24 эксперимента на МКС

Периферийные вычисления подразумевают работу достаточно мощных серверов в нестандартных условиях. Казалось бы, 400 километров — не такое уж большое расстояние. Но если это высота орбиты космической станции, то более «периферийное» место найти будет сложно. А ведь если человечество планирует и далее осваивать космос, оно неизбежно столкнётся и с проблемами, свойственными космическим ЦОД.

Первый космический суперкомпьютер, как его окрестили создатели из HPE, появился в 2017 году и успешно проработал на орбите 615 дней. Инженеры учли выявленные особенности работы такой системы на орбите и в прошлом году отправили на МКС Spaceborne-2 (SBC-2), который стал вдвое производительнее предшественника.

 HPE Spaceborne-1

HPE Spaceborne-1

Хотя SBC-2 по земным меркам и невелик и состоит всего из двух вычислительных узлов (HPE Edgeline EL4000 и HPE ProLiant DL360 Gen10, совокупно чуть более 2 Тфлопс), это самая мощная компьютерная система, когда-либо работавшая в космосе. К тому же, это единственная космическая вычислительная система, оснащённая ИИ-ускорителем NVIDIA T4.

 HPE Spaceborne-2 (Изображения: HPE)

HPE Spaceborne-2 (Изображения: HPE)

Теперь же HPE сообщает, что эта машина меньше чем за год помогла в проведении 24 важных научных экспериментов. Всё благодаря достаточно высокой производительности. Одним из первых стал стал анализ генов — обработка данных непосредственно на орбите позволила снизить объём передаваемой информации с 1,8 Гбайт до 92 Кбайт. Но это далеко не единственный результат.

Так, ИИ-ускорители были задействованы для визуального анализа микроскопических повреждений скафандров, используемых для выхода в открытый космос. Они же помогли в обработке данных наблюдения за крупными погодными изменениями и природными катаклизмами. Также был проведён анализ поведения металлических частиц при 3D-печати в невесомости, проверена возможность работы 5G-сетей космических условиях, ускорены расчёты требуемых объёмов топлива для кораблей и т.д.

Ряд проблем ещё предстоит решить: в частности, в условиях повышенной космической радиации существенно быстрее выходят из строя SSD, что естественно для технологии, основанной на «ловушках заряда». По всей видимости, для дальнего космоса целесообразнее будет использовать накопители на базе иной энергонезависимой памяти. Впрочем, при освоении Луны или Марса полагаться на земные ЦОД тоже будет трудно, а значит, достаточно мощные вычислительные ресурсы придётся везти с собой.

Постоянный URL: http://servernews.ru/1064130
30.09.2017 [00:15], Алексей Степин

Терафлопс в космосе: на МКС тестируется компьютер HPE Spaceborne

Бытует мнение, что в космической отрасли используется всё самое лучшее, включая компьютерные компоненты. Это не совсем так: вы не встретите в космических аппаратах 18-ядерных Xeon и ускорителей Tesla. Во-первых, энергетические резервы за пределами Земли строго ограничены, и даже на МКС никто не будет тратить несколько киловатт на питание «космического суперкомпьютера». Во-вторых, практически вся электроника, работающая за пределами атмосферы, выпускается в специальном радиационно-стойком исполнении. Чаще всего за счёт техпроцессов «кремний на диэлектрике» (SOI) и «сапфировая подложка» (SOS), используется также биполярная логика вместо менее стойкой к внешним излучениям CMOS.

 Мини-кластер в космическом исполнении. Охлаждение жидкостное

Мини-кластер в космическом исполнении. Охлаждение жидкостное

Мощными в космосе считаются такие решения, как BAE Systems серии RAD, особенно новая RAD5500 (от 1 до 4 ядер, 45-нм SOI, PowerPC, 64 бита). Четырёхъядерный вариант RAD5545 развивает производительность более 3,7 гигафлопс при потреблении около 20 ватт. Иными словами, вычислительные мощности в космосе тоже растут, но совсем иными темпами, нежели на Земле. Тому подтверждением служит недавно вступивший в строй на борту Международной космической станции компьютер HPE Spaceborne. Если на Земле мощность суперкомпьютеров измеряется десятками и сотнями петафлопс, то Spaceborne куда скромнее — судя по проведённым тестам, его вычислительная мощность достигает 1 терафлопса. Достигнута она путём сочетания современных процессоров Intel с ускорителями NVIDIA Tesla P100 (NVLink-версия).

 Конфигурация каждого из узлов Spaceborne

Конфигурация каждого из узлов Spaceborne

Для космических систем это большое достижение, и не стоит иронизировать над этим показателем производительности. Интересно, что сама по себе система Spaceborne, доставленная на борт станции миссией SpaceX CRS-12, является своего рода экспериментом на тему «как чувствуют себя в космосе обычные компьютерные комплектующие». Это связка из двух серверов HPE Apollo 40 на базе Intel Xeon, объединённая сетью со скоростью 56 Гбит/с. 14 сентября на систему было подано питание (48 и 110 вольт), а недавно проведены первые тесты High Performance LINPACK.

 Системы охлаждения и электропитания Spaceborne

Системы охлаждения и электропитания Spaceborne

Пока Spaceborne не будет использоваться для анализа научных данных или управления какими-либо системами станции. Его миссия — продемонстрировать то, насколько живучи обычные серверы в космосе. Результаты постоянных тестов будут сравниваться с аналогичной системой, оставшейся на Земле. Тем не менее, достижение первого терафлопса в космосе является своеобразным мировым рекордом. Это маленький шаг для супервычислений, но большой для всей космической индустрии, поскольку за Spaceborne явно последуют его более совершенные и мощные потомки.

Постоянный URL: http://servernews.ru/959278
Система Orphus