Project Suncatcher: Google рассказала о проекте масштабируемой ИИ-инфраструктуры в космосе

 

Google рассказала об инициативе Project Suncatcher, предусматривающей использование группировок спутников-ЦОД на основе TPU компании. Предполагается, что спутники будут работать на солнечной энергии, в изобилии поступающей в околоземное пространство, сообщает пресс-служба техногиганта. Спутники будут связаны оптическими каналами.

Размещать спутники в космосе компания намерена не случайно. При выборе подходящей орбиты солнечная панель может быть в 8 раз производительнее, чем на Земле и генерировать электричество практически непрерывно, не завися от погодных условий, что сведёт к минимуму потребность в использовании аккумуляторов.

В будущем космос может стать оптимальным местом для масштабирования ИИ-вычислений. Project Suncatcher предполагает создание относительно небольших спутниковых группировок с питанием от солнечных элементов, оснащённых TPU-ускорителями Google. Возможность использования оптических соединений друг с другом обеспечивает огромный потенциал масштабирования. Кроме того, к минимуму сводится воздействие на земные ресурсы.

Компания опубликовала документ Towards a future space-based, highly scalable AI infrastructure system design, в котором описала прогресс в решении фундаментальных задач, связанных с реализацией проекта, включая высокоскоростную связь между спутниками. Учитываются орбитальная динамика и влияние радиации на вычисления. Модульная структура обеспечивает создание высокомасштабируемой ИИ-инфраструктуры в космосе в будущем.

 Источник изображения: Javier Miranda/unsplash.com

Источник изображения: Javier Miranda/unsplash.com

Предлагаемая система представляет собой сеть спутников на солнечно-синхронной низкой околоземной орбите, работающих на рассвете и закате, они будут практически постоянно находиться под воздействием солнечного света. Выбор орбиты позволяет максимально эффективно использовать солнечную энергию и снизить потребность в использовании тяжёлых бортовых аккумуляторов. Тем не менее предстоит решить ряд задач на пути к цели.

Сначала необходимо обеспечить высокоскоростные оптические соединения с низкой задержкой в рамках распределённого космического ЦОД. Для того, чтобы производительность была сопоставима с земными аналогами, необходимо обеспечить связь в десятки терабит в секунду. Этого, возможно, удастся добиться с помощью спектрального уплотнения (DWDM) и пространственного мультиплексирования.

Впрочем, для обеспечения необходимой пропускной способности необходима мощность сигнала в тысячи раз выше, чем в традиционных системах дальнего радиуса действия. Ожидается, что частично решить проблему можно будет, разместив спутники очень близко друг к другу (километры или даже меньше). Компания уже начала стендовые испытания подходящих технологий и добилась передачи парой приёмопередатчиков со скоростью 800 Гбит/с в каждом направлении (всего 1,6 Тбит/с).

Также пришлось разработать модели орбитальной динамики близко расположенных спутников на орбите, поскольку те должны летать гораздо более «компактно», чем любая существующая система. На динамику орбит, например, влияют несферичность гравитационного поля Земли и потенциальное сопротивление разреженной атмосферы при их движении. Модели показывают, что при размещении спутников на расстоянии в сотни метров друг от друга, скорее всего, потребуются лишь незначительные манёвры по поддержанию стабильности группировок в пределах нужной солнечно-синхронной орбиты.

Стоит отметить и необходимость обеспечения устойчивости TPU к условиям низкой околоземной орбиты. TPU v6e Trillium прошёл испытания в пучке протонов с энергией 67 МэВ для проверки их устойчивости к радиации.

 Источник изображения: Google

Источник изображения: Google

Наиболее чувствительными компонентами оказались HBM-модули памяти, но в целом результаты оказались многообещающими для компонентов «из коробки» — TPU Trillium удивительно устойчивы к радиации для применения в космосе.

Ключевую роль играет экономическая целесообразность проекта и стоимость запуска в частности. Исторически именно высокие затраты на запуск не в последнюю очередь были препятствием для создания крупномасштабных космических систем. Тем не менее в Google прогнозируют, что к середине 2030-х гг. цены могут снизиться до менее $200 за кг. В компании сообщают, что при таком уровне затрат стоимость запуска и эксплуатации космического ЦОД может стать приблизительно сопоставимой с заявленными затратами на электроэнергию эквивалентного наземного дата-центра в расчете на киловатт-час в год.

Предварительный анализ показывает, что непреодолимых физических и экономических препятствий для вычислений в космосе не имеется, но ещё предстоит решить ряд инженерных задач вроде проблем управления температурным режимом, обеспечения высокоскоростной наземной связи и надёжности орбитальных систем.

Для решения этих задач следующим этапом станет учебная миссия при участии компании Planet, в рамках которой планируется запустить два прототипа спутников уже к началу 2027 года. Будет проверено, как TPU работают в космосе, а также использование оптических межспутниковых каналов связи. В конечном итоге группировки гигаваттного масштаба возможно, выиграют от применения новых вычислительных архитектур, более подходящих для космической среды.

Космических проектов в последние годы реализуется немало. Так, буквально в конце октября появилась новость, что Crusoe развернёт облачную платформу на спутнике Starcloud.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER. | Можете написать лучше? Мы всегда рады новым авторам.

Источник:

Постоянный URL: https://servernews.ru/1131911

Комментарии

Система Orphus