SiMa.ai представила чипы Modalix для мультимодальных рабочих нагрузок ИИ на периферии

 

Стартап SiMa.ai анонсировал специализированные изделия Modalix — «системы на чипе» с функциями машинного обучения (MLSoC), спроектированные для обработки ИИ-задач на периферии. Эти решения предназначены для дронов, робототехники, умных камер видеонаблюдения, медицинского диагностического оборудования, edge-серверов и пр.

В семейство Modalix входя четыре модификации — М25, М50, М100 и М200 с ИИ-производительностью 25, 50, 100 и 200 TOPS соответственно (BF16, INT8/16). Изделия наделены процессором общего назначения с восемью ядрами Arm Cortex-A65, работающими на частоте 1,5 ГГц. Кроме того, присутствует процессор обработки сигналов изображения (ISP) на базе Arm Mali-C71 с частотой 1,2 ГГц. В оснащение входят 8 Мбайт набортной памяти. Изделия производятся по 6-нм технологии TSMC и имеют упаковку FCBGA с размерами 25 × 25 мм.

 Источник изображения: SiMa.ai

Источник изображения: SiMa.ai

Чипы Modalix располагают узлом компьютерного зрения Synopsys ARC EV-74 с частотой 1 ГГц. Говорится о возможности декодирования видеоматериалов H.264/265/AV1 в формате 4K со скоростью 60 к/с и кодировании H.264 в формате 4K со скоростью 30 к/с. Реализована поддержка восьми линий PCIe 5.0, четырёх портов 10GbE, четырёх интерфейсов MIPI CSI-2 (по четыре линии 2.5Gb), восьми каналов памяти LPDDR4/4X/5-6400 (до 102 Гбайт/с). Таким образом, по словам SiMa.ai, Modalix покрывает практически весь цикл работы с данными, не ограничиваясь только ускорением ИИ-задач.

 Источник изображения: SiMa.ai

Источник изображения: SiMa.ai

По заявлениям SiMa.ai, чипы Modalix можно применять для работы с большими языковыми моделями (LLM), генеративным ИИ, трансформерами, свёрточными нейронными сетями и мультимодальными приложениями. Среди возможных вариантов использования названы медицинская визуализация и роботизированная хирургия, интеллектуальные приложения для розничной торговли, автономные транспортные средства, беспилотники для инспекции зданий и пр. Есть поддержка популярных фреймворков PyTorch, ONNX, Keras, TensorFlow и т.д. Также предоставляется специализированный набор инструментов под названием Pallet, упрощающий создание ПО для новых процессоров.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER. | Можете написать лучше? Мы всегда рады новым авторам.

Источник:

Постоянный URL: https://servernews.ru/1110841

Комментарии

Система Orphus