Graphcore анонсировала ИИ-ускорители BOW IPU с 3D-упаковкой кристаллов WoW

 

Разработка специализированных ускорителей для задач и алгоритмов машинного обучения в последние несколько лет чрезвычайно популярна. Ещё в 2020 году британская компания Graphcore объявила о создании нового класса ускорителей, которые она назвала IPU: Intelligence Processing Unit. Их архитектура оказалась очень любопытной.

Основной единицей IPU является не ядро, а «тайл» — область кристалла, содержащая как вычислительную логику, так и некоторое количество быстрой памяти с пропускной способностью в районе 45 Тбайт/с (7,8 Тбайт/с между тайлами). В первой итерации чип Graphcore получил 1216 таких тайлов c 300 Мбайт памяти, а сейчас компания анонсировала следующее поколение своих IPU.

 Изображения: Graphcore

Изображения: Graphcore

Новый чип, получивший название BOW, можно условно отнести к «поколению 2,5». Он использует кристалл второго поколения Colossus Mk2: 892 Мбайт SRAM в 1472 тайлах, способных выполнять одновременно 8832 потока. Этот кристалл по-прежнему производится с использованием 7-нм техпроцесса TSMC, но теперь Graphcore перешла на использование более продвинутой упаковки типа 3D Wafer-on-Wafer (3D WoW).

Новый IPU стал первым в индустрии чипом высокой сложности, использующем новый тип упаковки, причём технология 3D WoW была совместно разработана Graphcore и TSMC с целью оптимизации подсистем питания. Процессоры такой сложности отличаются крайней прожорливостью, а «накормить» их при этом не просто. В итоге обычная упаковка не позволяет добиться от чипа уровня Colossus Mk2 максимальной производительности — слишком велики потери и паразитный нагрев.

Реализована 3D WoW во многом аналогично технологии, применённой AMD в серверных чипах Milan-X. Упрощённо говоря, медные структуры-стержни пронизывают кристалл и позволяют соединить его напрямую с другим кристаллом, причём «склеиваются» они друг с другом благодаря. В случае с BOW роль нижнего кристалла отводится распределителю питания с системой стабилизирующих конденсаторов, который питает верхний кристалл Colossus Mk2. За счёт перехода с плоских структур на объёмные можно как увеличить подводимый ток, так и сделать путь его протекания более короткими.

В итоге компании удалось дополнительно поднять частоту и производительность BOW, не прибегая к переделке основного процессора или переводу его на более тонкий и дорогой техпроцесс. Если у оригинального IPU второго поколения максимальная производительность составляла 250 Тфлопс, то сейчас речь идёт уже о 350 Тфлопс — для системы BOW-2000 с четырьмя чипами заявлено 1,4 Пфлопс совокупной производительности. И это хороший выигрыш, полученный без критических затрат.

С внешним миром IPU общается по-прежнему посредством 10 каналов IPU-Link (320 Гбайт/с). Внутренней памяти в такой системе уже почти 4 Гбайт, причём работает она на скорости 260 Тбайт/с — критически важный параметр для некоторых задач машинного обучения, которые требуют всё большие по объёму наборов данных. Ёмкость набортной памяти далека от предлагаемой NVIDIA и AMD, но выигрыш в скорости даёт детищу Graphcore серьёзное преимущество.

Узлы BOW-2000 совместимы с узлами предыдущей версии. Четыре таких узла (BOW POD16) с управляющим сервером — всё в 5U-шасси — имеют производительность до 5,6 Пфлопс. А полная стойка с 16 узлами BOW-2000 (BOW POD64) даёт уже 22,4 Пфлопс. По словам компании, производительность новой версии возросла на 30–40 %, а прирост энергоэффективности составляет от 10 % до 16 %.

Graphcore говорит о десятикратном превосходстве BOW POD16 над NVIDIA DGX-A100 в полной стоимости владения (TCO). Cтоит BOW POD16 вдвое дешевле DGX-A100. К сожалению, говорить о завоевании рынка машинного обучения Graphcore рано: клиентов у компании уже довольно много, но среди них нет таких гигантов, как Google или Baidu. В долгосрочной перспективе ситуация для Graphcore далеко не безоблачна, но компания уже готовит третье поколение IPU на базе 3-нм техпроцесса.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER. | Можете написать лучше? Мы всегда рады новым авторам.

Источник:

Постоянный URL: https://servernews.ru/1061392
Система Orphus